
z d 

NASA Contractor Report 178388 

The Computational Structural Mechanics Testbed 
Architecture: Volume V - The Input-Output 
Manager DMGASP 

Carlos A. Felippa 

Lockheed Missiles and Space Company, Inc. 
Palo Alto, California 

Contract NAS1-18444 

March 1989 

NASA 
National Aeron,iutic 5 and 
Space Administr,ition 

Langley Research Center 
Hampton, Virginia 23665-5225 

(NA SA-CR-17 83 8 8 )  
STBUCTUBAL %ECHAbTICS TESTBED ARCHITECTUBE, 
VOLUME 5: THE INPUT-OUTPUT HANAGER DHGASP 
[Lockheed Missiles and Space Co.) 158  p Unclas 

T HE COMPUT AT ION AL N 89- 2 46 37 

CSCL 20K G3/39 0209819 



i Preface 

The first three volumes of this five-volume set present a language called CLAMP, an 
acronym for Command Language for  Applied Mechanics Processors.  As the name 
suggests, CLAMP is designed to control the flow of execution of Processors written for 
NICE, the Network of Interact ive Computational Elements,  an integrated software 
system developed at  Lockheed’s Applied Mechanics Laboratory. 

The syntax of CLAMP is largely based upon that of a 1969 command language called 
NIL (NOSTRA Input Language). The language is written in the form of free-field source 
command records. These records may reside on ordinary text files, be stored as global 
database text elements, or be directly typed at your terminal. These source commands are 
read and processed by an interpreter called CLIP, the Command Language  Interface 
Program. The output of CLIP does not have meaning per se. The Processor that calls 
CLIP is responsible for translating the decoded commands into specific actions. 

The ancestor of CLIP, LODREC, was patterned after the input languages of ATLAS 
and SAIL, two structural analysis codes that evolved at Boeing in the late 1960s. More 
modern language capabilities, notably command procedures and macrosymbols, have been 
strongly influenced by the UnixTM operating system and the C programming language. 
The Unix “shell/kernel” concept, in fact, permeates the architecture of the NICE system, 
of which CLIP is a key component. 

NIL and its original interpreter LODREC, which now constitutes the “kernel” of CLIP, 
has been put to extensive field testing for over a decade. In fact NIL has been the input 
language used hy  all application programs developed by the author since 1969 to 1979. 
( N I L  also drivcs the relational data manager RIM developed by Boeing for NASA Lang- 
ley Research Center.) During this period many features of varying degree of complexity 
were tried and about half of them discarded or replaced after extensive experimentation. 
CLAMP represents a significant enhancement of NIL, particularly as regards to directive 
processing, interface with database management facilities, and interprocessor control. The 
current version is therefore believed to be powerful, efficient, and easy to use, and well 
suited to interactive work. 

Volume I (NASA CR-178384) presents the basic elements of the CLAMP language and 
is intended for all users. Volume I1 (NASA CR-178385), which covers CLIP directives, is 
intended for intermediate and advanced users. Volume I11 (NASA CR-178386) deals with 
the CLIP-Processor interface and related topics, and is meant only for Processor devel- 
opers. Volume IV (NASA CR-178387) describes the Global Access Library (GAL) and is 
intended for all users. Volume V (NASA CR.-178388) dcscribes the low-level input/output 

1 



(I/O) routines. 
This Manual describes a separable component of a multilevel data management system 

for the NICE network (NICE-DMS): the input-output (I/O) Manager. The 1/0 Manager 
functions as focal point for direct-uccess I/O and attendant auxiliary-storage administra- 
tion activities initiated by its user program. 

The implementation of the 1/0 Manager for NICE-DMS is called DMGASP. This is a 
package of FORTRAN 77 subroutines, which are supported by assembly language routines 
on some computers. Versions of DMGASP are available for operation on Univac 1100, 
CDC Cyber, VAX 11/780 and IBM 3000-series computers. 

This document consists of several sections in which the technical scope and capabilities 
of DMGASP are discussed, and information required to make use of it in a stand-alone 
configuration is given. In addition, some material on auxiliary storage devices is 
to avoid references to scattered sources. 

collected 

Warning: This Manual is not a tutorial document. It is intended 
only for advanced programmers, and as backup reference for main- 
tenance of NICE-DMS. NICE processor developers not qualifying as 
1/0  experts should limit themselves to the higher data management 
levels ( L e . ,  EZ-GAL), and avoid direct calls to the 1 / 0  Manager. 

- - - - ___.-___ - _ -  

.. 
I! 



Contents 

Section Page 

1. INTRODUCTION 1- 1 
1-1 
1-1 

1.1.2. Stand-alone Configuration 1-3 
1.2. STORAGE COMPONENTS 1-5 
1.3. SCOPE OF DMGASP 1-7 
1.3.1. Basic Operations 1-7 

1.1. THE 1/0 MANAGER AND NICE 
1.1.1. Role of the 1/0 Manager 

1.3.2. FORTRAN and Block 1/0 Access Methods 1-7 
1.3.3. Paged 1/0 1-8 
1.4. DEVICE MANAGEMENT OVERVIEW 1-9 
1.4.1. Logical Devices 1-9 
1.4.2. Auxiliary Storage Devices 1-9 
1.4.3. Core Devices 1-11 
1.5. RESERVED SYMBOLS 1-12 

2. DEVICE MANAGEMENT 2- 1 

2.2. STRUCTURE OF DIRECT-ACCESS DEVICES 2-5 
2.1. THE PHYSICAL ORGANIZATION OF DATA 2-1 

2.2.1. Physical Record Units 2-2 
2.2.2. The View From Outside 2-3 
2.2.3. The View From Inside 2-4 
2.2.4. Hardware PRU Size 2-5 
2.3. RECORDS 2-6 
2.3.1. Definition 2-6 
2.3.2. PRU Alignment 2- 7 
2.3.3. Device Positioning 2- 7 
2.3.4. Interrecord Gaps 2-8 
2.4. RECORD DYNAMICS AND FILE INTEGRITY 2-9 
2.4.1. Unpaged Block 1/0 2-9 
2.4.2. Unpaged FORTRAN I/O 2-9 
2.4.3. Paged Block 1/0 2-10 
2.4.4. Paged FORTRAN 1 /0  2-11 

... 
i i i  



Contents . 

Section 

2.5. DEVICE DESCRIPTORS 
2.5.1. Device Type Index 
2.5.2. Device Options Index 
2.5.3. Device Capacity Limit 
2.5.4. External PRU Size Parameter 
2.5.5. Logical Units 
2.5.6. The File-Length Recovery Problem 
2.6. FILE SYSTEMS 
2.6.1. File Conventions on Univac 
2.6.2. File Conventions on CDC 
2.6.3. File Conventions on VAX 
2.6.4. File Conventions Summary 
2.7. EXTERNAL DEVICE NAMES 
2.7.1. External Device Names on Univac 
2.7.2. External Device Names on CDC 
2.7.3. External Device Names on VAX 

3. BASIC OPERATIONS 
3.1. OPEN DEVICE: DMOPEN/DMDAST 
3.1.1. Entry DMOPEN 
3.1.2. Entry DMDAST 
3.1.3. Open Message 

3.2.1. Entry DMCLOS 
3.2.2. Entry DMFAST 
3.2.3. Close Message 

3.2. CLOSE DEVTCl?: DhICLOS/DMFAST 

Page 

2-12 
2-12 
2-15 
2-15 
2-18 
2-18 
2-19 
2-21 
2-21 
2-22 
2-22 
2-23 
2-24 
2-26 
2-27 
2-27 

3-1 
3-1 
3-3 
3-5 
3-5 
3-8 
3-7 
3-8 
3-8 

3.3. POSITION DEVICE: DMPOST/DMPAST 3-10 
3.3.1. Entry DMPOST 3-9 
3.3.2. Entry DMPAST 3-10 
3.4. WRITE RECORD: DMWRIT/DMWAST 3-11 
3.4.1. Entry DMWRIT 3-11 
3.4.2. Entry DMWAST 3-12 

iv 



Contents 
. 

Section Page 

3.5. READ RECORD: DMREAD/DMRAST 3-13 
3.5.1. Entry DMREAD 3-13 
3.5.2. Entry DMRAST 3-14 
3.6. LIST INF 0 RM AT IO N : D M S TAT/ D ML A S T 3-16 
3.6.1. Entry DMSTAT 3-15 
3.6.2. Entry DMLAST 3-18 

4. SUPPLEMENTAL OPERATIONS 
4.1. ER.ROR-ABORT RUN: DMABRT 
4.2. SET MACROPROCESSOR FLAG: DMACRO 
4.3. FLUSH PAGE BUFFER POOL: DMFLUB 
4.4. SET DEVICE CAPACITY LIMIT: DMLIMT 
4.5. SET DEVICE EXTENT: DMNEXT 
4.6. DECLARE PAGE BUFFER POOL: DMPOOL 
4.7. SUPPRESS OPEN/CLOSE MESSAGES: DMSOCM 
4.8. RESET UNIT/LDI CORRESPONDENCE: DMUNIT 
4.9. SET EXTERNAL PRU SIZE: DMXPRU 

4- 1 
4-3 
4-4 
4-5 
4-6 
4-7 
4-8 
4- 10 
4-11 
4-12 

5. INFORMATION RETRIEVAL FUNCTIONS 5- 1 
5.1. RETRIEVE EQUIPMENT CODE: LMDLOC 5-3 
5.2. RETRIEVE EQUIPMENT CODE: LMEQCD 5-4 
5.3. INQIJIRE RY COGTCAL DEVICE: LMTNQL 5-5 

5-6 
5.5. INQUIRE FOR FILE EXISTENCE: LMINQX 5-7 
5.6. RETRIEVE INTERNAL PRU: LMIPRU 5-8 
5.7. RETRIEVE FIRST FREE LDI: LMLDIF 5-9 
5.8. RETRIEVE LDI THAT MATCHES UNIT: LMLDIU 5-10 
5.9. RETRIEVE DEVICE CAPACITY LIMIT: LMLIMT 5-11 
5.10. RETRIEVE DEVICE EXTENT: LMNEXT 5-12 
5.11. RETRIEVE USER WORDS WRITTEN: LMNUWW 5-13 
5.12. RETRIEVE OPTIONS INDEX: LMOPTX 5- 14 

5.4. INQUIRE FOR EDN IN LDT: LMINQT 

V 



Contents 

Section Page 

5.13. RETRIEVE TYPE INDEX: LMTYPX 5-15 
5.14. RETRIEVE LOGICAL UNIT: LMUNIT 5-16 
5.15. RETRIEVE EXTERNAL PRU: LMXPRU 5-17 

6. ERROR HANDLING 6- 1 
6.1. ERROR PROCESSING OVERVIEW 6- 1 
6.1.1. Error Classification 6-2 
6.1.2. Error Terminology 6-3 
6.2. ERROR DIAGNOSTICS 6-5 
6.2.1. Error Message Format 6- 5 
6.2.2. List of Error Messages 6- 5 
6.3. IDENTIFY USER SUBPROGRAM: DMUSER 6-10 
6.4. TEST ERROR CONDITION: LMERCD 6-11 
6.5. EXTRACT ERROR INFORMATION: DMEINF 6-12 
6.6. RETRIEVE 1 / 0  STATUS CODE: LMIOST 6-13 
6.7. DEFUSE FATAL ERRORS: DMEASY 6-14 
6.8. SPECIFY ERROR TERMINATOR: DMETER 6-15 
6.9. TAKE FATAL ERROR EXIT: DMFATE 
6.10. P R I N T  EttROII TR.ACE STACK: DMPETS 

6-16 
6-17 

7. REFERENCES 7- 1 

vi 



Contents 

Appendix Page 

A. COMPILATION INSTRUCTIONS A- 1 

B. GLOSSARY B- I 

C. PAGED 1 / 0  PERFORMANCE 
C.l. T O  PAGE OR NOT TO PAGE 
C.2. TRANSPARENCY 
C.3. DISADVANTAGES OF PAGED 1/0 
C.4. PERFORMANCE PARAMETERS 
C.5. A PERFORMANCE TEST 
C .6. RE C 0 MME ND AT IO NS 

c- 1 
c- 1 
c- 1 
c-2 
c-2 
c-3 
C-6 

D. MISCELLANEOIJS UTILITIES D- 1 
D.1. CONVERT CHARACTER TO HOLLERITH: CC2H D-1 
D.2. CONVERT HOLLERITH T O  CHARACTER: CH2C D-3 
D.3. FIND BATCH OR INTERACTIVE: FBI 
D.4. GET BLANK COMMON LOCATION: LOCBCW 

D-4 
D-5 

E. INDEX E- 1 

vii 



Tables 
8 

Table Page 

2.1 The Device Type Index (TYPEX) 2-13 
2.2 Internal PRU for FORTRAN 1/0 Devices 2-13 
2.3 Machine-Independent Values of OPTX 2-16 
2.4 Machine-Dependent Values of OPTX 2-16 
2.5 Default Device Capacity 2-17 
2.6 Default LDI-Logical Unit Correspondence 2-17 
2.7 File Systems Terminology Summary 2-21 
2.8 Default External Device Names 2-23 

3.1 Basic-Operation Entry Points 3-3 
3.2 LDT Print Explanation 3-16 
3.3 OSD Print Explanation 3-18 

4.1 Supplemental-Operation Entry Points 4-3 

5.1 Informat ion-Retrieval Functions 5-3 

6.1 Error-Handling Entry Points 6-3 

viii 



1 
Introduction 

i 

1-1 



Sectlon 1: INTRODUCTION 

51.1 THE 1 /0  MANAGER AND NICE 

NICE (Network of Interactive Computational Elements) is a database-coupled, executive- 
less, integrated software system under development since 1980 at Lockheed’s Applied 
Mechanics Laboratory. NICE consists of architectural components described in [ 11, and 
of computational elements called processors. 

The NICE Data Management System (NICE-DMS) is one of three architectural com- 
ponents, the other two being processor-execution control and source-code maintenance. 
NICE-DMS implements advanced techniques for the administration of scientific databases. 
It is a multilevel system, the main components of which are shown in Figure 1.1. In the 
present document, we shall be concerned with the box labeled “I/O Manager”. Instruc- 
tions are given in Appendix A for compiling the NICE-DMS code on a VAX/VMS system. 
A glossary of commonly-used terms is given in Appendix B. Paged 1/0 performance com- 
parisons are given in Appendix C. Several useful utilities are described in Appendix D, An 
index for this document is provided in Appendix E. 

$1.1.1. Role of the 1 / 0  Manager 

The most primitive level of NICE-DMS is the Input-Output Manager (IOM), which is 
implemented as a subroutine package called DMGASP. The IOM functions as a modular 
interface between operating-system software devoted to Input-Output (I/O) functions, and 
the higher levels of NICE-DMS. 

These 1 / 0  functions pertain mainly to the use of auziliary storage facilities such as 
direct-access mass storage (disks, drums), sequential-access storage (tapes, cassettes) and 
extended core storage. The present 1/0 Manager emphasizes direct-access devices, while 
sequential-access devices are being phased out. 

REMARK 1.1 

Readers familiar with database management literature will recognize DMGASP as the access 
method of NICEDMS, i.e., the software that maps a stored-record interface onto a physical-record 
interface. 

1-2 



$1.1 THE 1/0 MANAGER AND NICE 

CLIP BOX 3 

Figure 1.1. Configuration of NICE-DMS: Boxes 1, 2, and 3 
are system-wide architectural components 

BOX 2 
- 

EZ-GAL Local Data Manager 

1-3 

- 
Global Database Local Database 



Section 1: INTRODUCTION 

$1.1.2. Stand-Alone Configuration 

The higher levels of NICE-DMS, such as the global data manager [2] and the Command 
Language Interpreter Program CLIP (3,4,51, are riot dealt with in this document. Instead, 
the configuration that readers should keep in mind is that of Figure 1.2. This displays 
only two software components: the 1 / 0  Manager (IOM) and the user program. The term 
“user program” means all software external to the IOM and that calls it. Or, to borrow a 
term from acoustics: the user program is the IOM’s near-field. 

For a NICE processor, the user program includes EZ-GAL and possibly the local data 
manager, as illustrated in Figure 1.1. The NICE processor “kernel” never calls the 1/0 
Manager directly. Some computer programs may call all the 1/0 manager directly, in 
which case the application program is the user program. 

The remaining subsections provide an overview of DMGASP and its interaction with 
typical storage facilities. 

. 

1-4 



, 
c 

$1.1 THE 1/0 MANAGER AND NICE 

I User Program 

I Storage Facilities 

Figure 1.2. 1/0 Manager DMGASP Operating 
as a Stand-Alone Module 

. 

1-5 



Section 1: INTRODUCTION 

g1.2 STORAGE COMPONENTS 

The  present section deals with fairly standard material and serves primarily to introduce 
terminology. It should be ignored on first reading. 

Storage is used to retain data and programs until they are needed during execution. 
Storage facilities available a t  a computer installation consist of physical storage devices 

or briefly devices, such as main storage, disks and tapes. The 1/0 Manager further sep- 
arates these facilities into logical devices, a concept that abstracts many hardware details 
and is taken up anew in 51.4. In the present section, device means physical storage device. 

A storage device is divided into a finite set of components called locations. Each 
location can represent any one of a finite set of data values. These values are recorded and 
retrieved by write and read operations. A location is identified by its address. 

One can characterize storage devices by the manner in which storage units can be 
accessed efficiently. 

A sequential-access device consist of storage units which can only be accessed in se- 
quential order. The device is positioned at its first location by a rewind operation. Read 
and write operations access the current location and position the device at  its next location. 

A storage device with direct access consists of storage units which can be accessed in 
arbitrary order by indexing. Most computers use two kinds of directly accessible stores: 
1. Main storage, also called an internal store, gives very fast access to locations called 

bytes (or words in some computers). The storage medium is usually integrated circuits. 
The time required to access a location is independent of its physical position; this 
location process is called random access. 
Auziliary storage, also called a backing store, gives slower, direct access to storage units 
consisting of blocks of bytes. It is used to hold data or programs until computations 
need them in the internal store. The storage medium is often rotating magnetic 
surfaces (drums, disks). In a rotating storage device, a data block can only be accessed 
when the rotation of the medium brings it under an access head. This is called cyclic 

Storage in present computers is usually provided by a hierarchy of devices of different 
types. Typically, a fast internal store of moderate capacity is backed by a slower, larger 
auxiliary store, which in turn is backed by a much larger but still slower file store. 

The motivation for this variety of storage components is economic: the cost of storage 
is roughly proportional to the storage capacity and its access rate. It would be prohibitively 
expensive to maintain all user’s programs and data permanently in main storage. Instead, 
users and operating systems try to distribute programs and data at various levels in the 
storage hierarchy according to their expected frequency of usage. 

2. 

(1 ccc R.Y. 



$1.3 SCOPE OF DMGASP 

$1.3 SCOPE OF DMGASP 

51.3.1. Basic Operations 

The I/O Manager DMGASP controls the use of storage facilities by its user program. 
Emphasis is placed on the management of auziliary storage. Control is exercised through 
five basic operations: 

1 .  Open a device (facility acquisition) 

2 .  Position a device 

3 .  Read a record from a device 

4. Write a record on a device 

5.  Close a device (facility release) 

These basic operations constituted the nucleus of DMGASP. Over the years they have 
been augmented with display, error-handling and supplemental operations. 

REMARK 1.2 

The open and close operations were called “declare” and “free” in earlier versions of this document. 
But open and close is now widely accepted terminology in 1/0 systems. 

$1.3.2. FORTRAN and Block 1 / 0  Access Modes 

Regarding read/write activities (items 3 and 4 of the previous list), two f i l e  access methods 
are possible on most computers: 

FORTRAN I/O. Read and write operations are effected through FORTRAN READ 
and WRITE statements that operate on direct-access FORTRAN files. Some form of 
buflering by the FORTRAN 1/0  library is always involved, but this is beyond the control 
of DMGASP. 

fl lock f ’0. D a t a  is mnved direct137 in iii~l~iiff~red “block” form from main to auxilia.rv 

Use of Block 1 / 0  normally results in considerable efficiency gains, especially for large 
storage and vice-versa, using calls to operating-system services. 

records, but sacrifices portability. 

REMARK 1.3 

The original DMGASP provided only Block I/O. With the development of the FORTRAN 77 
version, FORTRAN 1/0 appeared, and now constitutes the core of the “portable” version. This 
means tha t  if the 1/0 Manager code is transported to a new machine, only FORTRAN 1/0 is 
made available. As time passes, a Block 1/0 capability may be eventually provided to make 1/0 
more efficient. 

* 

1-7 



I Section 1: INTRODUCTION 

in practice it works best with the former (as Paged FORTRAN 1/0 in fact entails double 

REMARK 1.4 

For versions that include both FORTRAN and Block I/O, the user has the choice of selecting 
one or the other for each particular device. The choice is done at the time the device is initiated. 
More details are provided in following sections. 

REMARK 1.5 

Access methods cannot be intermixed for a given device. 

I $1.3.3. Paged 1 / 0  

. 

1-8 



$1.4 DEVICE MANAGEMENT OVERVIEW 

51.4 DEVICE MANAGEMENT OVERVIEW 

5 1.4.1. Logical Devices 

Storage facilities managed by DMGASP are separated into logical devices defined by the 
using program. Logical devices are referenced through Logical Device Indices (LDI). An 
LDI is an integer in the range 1 through MAXLDI, where MAXLDI is an adjustable 
internal parameter (presently 16). Throughout the remainder of this document, the term 
device is used in the sense of logical device, while device number means the corresponding 
LDI. 

When the user program begins execution, all legal device indices are considered un- 

Devices may be categorized according to their residence medium into ausiliary storage 
defined or inactive. 

and core devices. 

g1.4.2. Auxiliary Storage Devices 

A auxiliary storage device is opened (declared, activated, assigned, attached) through the 
following procedure (see Figure 1.3). 

1. 

2. 

3. 

The user program submits requests for storage facilities to the 1/0 Manager by sup- 
plying general characteristics of the desired equipment, a Logical Device Index, and 
(usually) a device name. 
If the request is for a Block 1 / 0  device, the 1/0 Manager directly relays the request 
to the operating system. Assuming the request is granted, the assigned facilities are 
entered in the run's file directory with the device name (explicitly supplied or selected 
by default) used as identifier or ezternal f i l e  name of the system file associated with 
the device. On some operating systems, the external file name is linked to an internal 
file name, which is subsequently used for requesting services such as record transfers. 
For a FORTRAN 1/0 device, a FORTRAN logical unit serves as link between the LDI 
and the device name. The open request is submitted to the FORTRAN 1/0 library 
using an OPEN statement. If this is granted, the assigned facilities are entered in 
the run's file directory as in the previous case. All subsequent services are requested 
through the logical unit. 

1-9 



Section 1: INTRODUCTION 

(a) Block I/O device with internal file name: , 

LDI Internal Disk file 
file name 

t 
External 
file name 

I 

I 
(b) Block I/O device without internal file name: 

LDI - External Disk file 
I 

file name 

(c) FORTRAN I/O device: 

LDI Logical unit - Disk file 

t 
External 
file name 

Figure 1.3. Schematic representation of LDI-to- 
file concatenat,ion for arixiliarv sttorage device 

. 

. 



§1.4 DEVICE MANAGEMENT OVERVIEW 

A declared device is said to be actiue. Attributes of active devices are kept in a logical 
device table (LDT). Active devices can be positioned, written upon and read from by 
following the procedures outlined in §3. 

An active device may be closed (deactivated, freed) a t  any time during the run. The 
released storage facilities are returned to the system. The device index is then considered 
inactive until a subsequent declaration, if any, attaches the LDI to other (or the same) 
facilities. 

REMARK 1.6 

The reader should not be unduly discouraged by the apparent complexity of the LDI-to-file con- 
catenation process. Upon opening a device, all subsequent 1/0 Manager transactions are made 
through its LDI. The advantage of this is that the programmer is spared distracting hardware 
details, and may simply think of the LDI of an open device 88 a path to the physical storage. 

REMARK 1.7 

For everyday use of the 1/0 Manager, the programmer never usees” internal file names or logical 
units, and indeed may forget that such things exist. These things become important when the 
IOM is moved to a different computer, or when the user-program developer worries about file 
name or logical unit clashing. To help on the latter subject, file-system characteristics of three 
computer systems on which the 1/0 Manager runs are reviewed in Sections 2.6-2.7. 

51.4.3. Core Devices 

Devices may also reside on main storage, more specifically FORTRAN blank common. 
These are called core devices. The activation process does not involve file management, 
and thus it is considerably simpler. 

1-11 



I Section 1: INTRODUCTION 

$1.5 RESERVED SYMBOLS 

Application programmers dealing with NICE-DMS in general and the 1/0 Manager in 
particular should take note of NICE-DMS global-symbol conventions in order to avoid 
name conflicts a t  link time. 

Symbols that begin with the following letter combinations are used for naming entry 
points: 

DM, GM, IO, LM 

More specifically: externally callable subroutines at the IOM and EZ-GAL levels are named 
DMzzzz and GMZZZZ, respectively. Externally callable integer functions at both levels are 
named LMszzz. And entry points “hidden” within the 1/0 Manager are named IOzszz. 

Symbols that begin with the letter combinations 

I CDM, CIO, CGM 

are used for naming internal common blocks. 

1-12 



Device Management 

2-1 



Sectlon 2: DEVICE MANAGEMENT 

42.1 THE PHYSICAL ORGANIZATION OF DATA 

Effective utilization of the 1/0 Manager demands some understanding of the physical 
organization of data in computer storage. The required knowledge basically reduces to 
two subjects: (a) the manner in which the data are stored, and (b) the manner in which 
the data are accessed. 

This knowledge is necessary because the 1/0 manager operates very close to the 
actual representation of data on the hardware. A less detailed knowledge is required for 
programmers that deal only with the Global Database Manager EZ-GAL, since the GDM 
conceals many hardware details through a logical-to-physical mapping process. 

This Section covers aspects of device management that are necessary for effective 
understanding of the IOM operations described in Sections 3 to 6. Inasmuch as the present 
implementation emphasizes direct-access devices, these are the only ones covered. 

2-2 



§2.2 STRUCTURE OF DIRECT-ACCESS DEVICES 

§2.2 STRUCTURE OF DIRECT-ACCESS DEVICES 

$2.2.1. Physical Record Units 
I -  

A direct-access device may be viewed as a linear array of physical record units (PRU). A 
PRU is defined its a storage unit that may be read or written without need of accessing or 
modifying adjacent PRUs. Or, to put in another way: read and write operations can start 
only at  a PRU boundary. 

Each PRUs is identified by its associated sequence number, counting from zero, as 
illustrated in Figure 2.1. 

Figure 2.1. Direct-Access Device as PRU Stream 

The sequence number is the PRU location. To address a direct-access device, one specifies 
the PRU location at  which data are to be stored or retrieved in the next write-record or 
read-record operation. This procedure is called device positioning; more about it in $2.3. 

The length or extent of a direct access device is the index of the highest PRU written. 
This PRU is called the end of information (EOI). The PRU that follows the EO1 is called 
the nezt free location. 

It is seen that the concept of a PRU naturally introduces read and write constraints. 
These are further elaborated upon in $2.3.2. 

So far, all of this seems straightforward. But complications arise from the fact that 
the PRU size varies according to the level from which one looks at  the direct access device. 
More specifically, the 1/0 manager has generally to know about three PRU sizes: external, 
internal, and hardware, as depicted in Figure 2.2. 

This PRU hierarchy exists because of conflicting requirements. A small PRU size 
optimizes storage utilization and simplifies addressing, but is detrimental to 1/0 perfor- 
mance. These requirements can be balanced by presenting a small PRU size to the user, 
while internally mapping transfcrs of records expressed in the smaller irnit,s into coarser 
block transfers. 

2-3 



Section 2: DEVICE MANAGEMENT 

(a) External PRU at the user/IOM interface: 

(b) Internal PRU at the IOM/OS interface: 

I 0 I 1 1  2 I 3 1  

(c) Hardware PRU at the OS/device-driver interface: 
- -_____________ 

I 0 I 1 I 

Figure 2.2. PRU “Granularity” of Direct-Access 
Devices according to Software Level 

2-4 



52.2 STRUCTURE OF DIRECT-ACCESS DEVICES 

52.2.2. The View from Outside 

The IOM user sees a direct-access device as an array of external PRUs. An external PRU 
is one or more words, and is specified - explicitly or implicitly - when the device is 
opened. 

If the external PRU size is exactly one word, the device is said to be word addressable. 
This is the default setting; ;.e., if nothing specific is said about external PRU size at  device 
open time. 

If the external PRU is one byte, the device is said to be byte addressable. The present 
1/0 Manager does not support byte-addressable devices; however, such addressability is 
simulated by the Global Data Manager EZ-GAL for certain character-record operations. 

In some old-fashioned file structures, notably those used by the DAL data management 
system, the external PRU size is equal to a disk sector (defined in 52.2.4). These are called 
sector addressable files. 

The external PRU size is used as the addressing unit for all device positioning op- 
erations. Thus, this level is the only one that most IOM users need to know or worry 
about . 
52.2.3. The View from Inside 

Deep within IOM, a different storage unit is used: the internal PRU. This is the block size 
used for physical 1 / 0  requests to the operating system. It is also the size of internal IOM 
buffers that take care of the internal/external PRU alignments. 

The selection of an internal PRU varies according to the storage medium and device 
access method. 

Disk-Residen t Block-I/O Devices. The internal PRU size coincides with the hardware PRU 
size; so in this case there are effectively only two PRU sizes. 

FORTRAN l / O  Devices. The internal PRU size is the “record length size” parameter of 
FORTRAN Direct-Access Files. This size is set according to a device-type descriptor when 
the device is opened (see $2.5), and either divides exactly the hardware PRU size, or is an 
exact multiple of it. 

Core-Resident Device. The internal PRU size is the same as the external PRU, Le. ,  one 
word. 

R E M A R K  2.1 

Knowledge about the internal PRU size is useful in special situations. One of these special 
situations would involve a FORTRAN 1/0 file created by the 1/0 manager and which is to be 
read directly by a DMGASP-less program. 

2-5 



Section 2: DEVICE MANAGEMENT 

$2.2.4. Hardware PRU Size 

The hardware PRU size is directly related to equipment characteristics. Hardware PRU 
sizes for disk-tesident devices vary from 4000 to 8000 bits. Some examples: 

Univac 1100: 112 four-byte words (1 byte = 9 bits) 
CDC Cyber: 64 ten-byte words (1 byte = 6 bits) 
VAX 11/780: 512 bytes (1 byte = 8 bits) 
IBM 370: variable; commonly 800 bytes (1 byte = 8 bits) 

For disk and drum devices, a hardware PRU is often identified with a sector, which is the 
smallest addressable segmentation of a disk track. But 1/0 system simulation may make 
a sector appear smaller. For example, Univac 1100 disk peripherals have a sector size of 
only 28 words. 

The hardware PRU of core-resident devices is either one word or one byte, depending 
on the addressibility characteristics of the computer. 

2-6 



$2.3 RECORDS 

$2.3 RECORDS 

The 1/0 Manager recognizes only one data object: the IOM record, or record for short. 

§2.3.1. Definition 

An IOM record is an array of words characterized by physical adjacency, and which can 
be read or written with a single call to the 1/0 Manager. 

An IOM record can reside at  any word-aligned location of main storage; this includes 
of course core devices. Auxiliary storage records must reside in logical devices accessible 
to the 1/0 Manager, and respect external-PRU alignments as explained in $2.3.2. 

There are no end-of-records marks. Application programmers that work at the IOM 
level are free to do imaginative (and dangerous) things like leaving “holes” between records, 
rewriting records with smaller or larger ones, or reading many adjacent records as one. 

REMARK 2.2 

The key terms in the definition are array and word. Note that the external PRU size is not 
mentioned in the definition, since it only affects alignment constraints (cf. 82.3.2). 

REMARK 2.3 

As far as record transmission is concerned, the IOM does very little preliminary checking before 
passing the request to the operating system or the FORTRAN 1/0 library. On read operations, it 
tests whether the record falls within the current device extent (PRUs 0 through EOI). It is even 
more permissive on write operations: it simply checks whether the record would not go beyond 
the device capacity limit. No diagnostic is given for trying to read from undefined areas in the 
middle of a device; diagnostics will be given by the operating system. 

REMARK 2.4 

Previous IOM versions also kept track of physical files on magnetic tape devices. With the disap- 
pearance of sequential-access devices, the concept of physical file becomes unnecessary. 

REMARK 2.5 

An IOM record occupies an intcrmediatc position between a logical recordas seen by the application 
prograrri (“get me a stiffness record”) and a physical record as seen by the 1/0 system (“ship these 
data blocks to so-and-so disk track”). 

2-7 



Section 2: DEVICE MANAGEMENT 

52.3.2. PRU Alignment 

Records on auxiliary storage devices are left-aligned with external PRU boundaries, as 
illustrated in Figure 2.3. 

Figure 2.3. Record Alignment Constraints 
(space between vertical bars = external PRU) 

If the device is not word-addressable, records generally do not fill the last PRU, as in 
the case of Record A in Figure 2.3. Users of such devices should be then aware of the 
interrecord gap problem, which is discussed in 52.3.4. 

$2.3.3. Device Positioning 

Positioning a device means specifying the PRU index at  which the next record read or 
write is to take place. Positioning may be ezplicit or implicit. 

To read Record A shown in Figure 2.3, the device is ezplicitly positioned at  PRU 
number 2 (the third PRU) and a read request issued. On successful completion, the device 
is implicitly positioned at PRU number 6, which is the PRU that immediately follows 
record A. To read Record B, the device is positioned at  PRU number 7 - another explicit 
positioning - and a read issued. On return, the device is implicitly positioned at  PRU 
number 10, which is where Record C begins, so this record be may read without pre- 
positioning. 

Explicit positioning is performed by calling the 1/0 Manager and telling it the PRU 
index. This operation is different from a read or write operation; positioning-and-read or 
positioning-and-write are not a single operation at the IOM level. Explicit positioning does 
not resiilt in any mechanical operation (as occurred when the old I/O Manager positioned 

Ixnylicit positioning occurs as a side result of read and write operations, and may be 
exploited to read or write records sequentially. 

The PRU “positioning” index maintained by the IOM for each device is called the 
Current Device Location, a state parameter often abbreviated to CDLOC. A device for 
which CDLOC = 0 is said to be rewound (= positioned at its beginning). A just-open 
device is always placed in the rewound state. 

l a magnetic tape): the PRIJ index is simply stored in the Logical Device Table. 

2-8 



$2.3 RECORDS 

$2.3.4. Interrecord Gaps 

I 

Advanced users ought to be aware of the “gap” problem that plagues devices that are not 
word-addressable. 

Suppose that the external PRU size of a device is 16 words. The device is positioned 
at  its beginning (PRU number 0) and a 32-word Record A, which covers exactly two PRUs, 
written. Then the device is repositioned at the beginning, and a 24-word Record B (one 
and a half PRUs) written. Finally, reposition again to PRU number 0, and read 32 words. 
What do you expect to find in the last 8 words? 

The answer is that nothing should be expected. On some computers, you will find 
the last 8 words of Record A intact. But on others you will find meaningless data - 
for example system-buffer “leftovers” from an unrelated process. Much depends on what 
happens between the two record writes. This is the infamous interrecord gap phenomenon: 
trailing locations on the last PRU written should be viewed aa undefined. 

If records were read exactly as they are written, the presence of interrecord gaps 
would be harmless. But IOM programmers typically will tend to take risks. Presetting 
the entire device extent to zero, which some inexperienced programmers have suggested, 
is not necessarily a solution on every computer. 

If word-addressable devices are used, no interrecord gaps can occur, and the problem 
goes away. This is one strong reason for using word addressing as standard, despite a slight 
loss in 1 / 0  performance. 

2-9 



Section 2: DEVICE MANAGEMENT 

$2.4 RECORD DYNAMICS AND FILE INTEGRITY 

An understanding of what actually happens to records on their way from source to des- 
tination is important for issues such as insuring data integrity under abnormal run ter- 
minations. The discussion below is limited to ausiliary storage devices resident on disk 
files. 

$2.4.1. Unpaged Block 1 / 0  

Unpaged Block 1/0 is the easiest to understand. Records are moved directly between the 
user program work area and the disk file in which the logical device resides, as sketched in 
Figure 2.4. 

Figure 2.4. Record Transmission in Unpaged Block-1/0 Device 

Notice the absence of visible stops or detours. (Records may be temporarily broken up 
within IOM “alignment buffers’’ that take care of external/internal PRU size mismatches, 
but are not held there.) 

If the user program terminates abnormally, records previously written (without error) 
with Unpaged Block 1 / 0  are guaranteed to be in the disk file. They might be inaccessible, 
but they are there. 

$2.4.2. Unpaged FORTRAN 1 / 0  

In FORTRAN 1 / 0  devices, records go through the buffering system of the FORTRAN 
Run-Time Library (FRTL), as shown in Figure 2.5. The buffer structure is machine- 
dependent. Some FRTL implementations assign distinct buffers t o  each logical unit, while 
others maintain a buffer pool for all units. 

Work area (=====FRTL Buffers =====) Disk File 

Figure 2.5. Record Transmission in Unpaged FORTRAN 1 / 0  Device 

These buffers are beyond the reach of both 1/0 Manager and user program. A close-device 
operation writes the contents of the buffers to the external device (this process is referred 
to as flushing the buffers) and guarantees the integrity of a file that is to survive execution. 
But what if the run suddenly aborts? 

What happens depends on how good the FORTRAN 1 /0  system is. On a decent 
system, write-buffers are automatically flushed and open files closed. But under some 
operating systems, consider yourself lucky if you can salvage anything from the program 
abort. 

I 2-10 



$2.4 RECORD DYNAMICS AND FILE INTEGRITY 

42.4.3. Paged Block 1 / 0  

For Paged 1/0 devices, there are more complications. Consider first the (most common) 
case of Paged Block I/O. Interposed between the user’s work area and the disk file is a 
Page Buffer Pool (PBP),  as shown in Figure 2.6. 

Work area (===== Page Buffer Pool =====) Disk File 

Figure 2.6. Record Transmission in Paged Block-1/0 Device 

The PBP is shared by all Paged devices, regardless of whether their file access method is 
Block or FORTRAN I/O. The PBP is subdivided into pages of equal size. The motivating 
idea is to try to reduce the number of physical data transfers when reading or writing 
clusters of small records, since the 1/0 Manager recognizes that data wanted by the user 
program are in the PBP. (This is not possible in the configuration of Figure 2.5, since 
FORTRAN buffers are beyond IOM’s control.) 

Explicit closing of a Paged device that has been written during the run insures file 
integrity. The main concern with such devices is that, should the run suddenly abort, 
records or record segments are left in the PBP. To alleviate this problem, the 1/0 Manager 
provides a “flush-PBP” service (44.3), which writes all modified pages to the appropriate 
device(s), without closing the device(s). Judicious use of this service for critical files that 
are to survive the run is highly recommended. 

52.4.4. Paged FORTRAN 1 / 0  

If a Paged device uses FORTRAN I/O, there are now two buffers being manipulated, as 
shown in Figure 2.7. 

Work area (=== PBP === FRTL Buffers ===) Disk File 

Figurge 2.7. Record Transmission in Paged FORTRAN-1/0 Device 

For these devices, one has to be doubly cautious to insure file integrity on abnormal 
termination. Periodic PBP flushing should be complemented by robust error-termination 
procedures. 

2-11 



Sectlon 2: DEVICE MANAGEMENT 

52.5 DEVICE DESCRIPTORS 

Attributes of logical devices are identified at the time the device is opened (“open time”) 
by four integer parameters known as device descriptors .  They are: 

Device Type Index (TYPEX) .  Characterizes device residence medium and file access 
method; for example: disk-file or core residence, block 1/0 or FORTRAN I/O. 

Device Options Index (OPTX).  Characterizes device permanency and use attributes; for 
example: existing or new, write-allowed or read-only. 

Device Capacity (LIMIT). Characterizes the maximum extent to which a newly created 
device may expand. 

External PRU size (XPRU). Characterizes the external PRU size of auxiliary storage 
devices; also used to flag Paged I/O. 

These four parameters are described in the following subsections. 

$2.5.1. Device Type Index 

The device type index (TYPEX) characterizes intr insic  attributes, L e . ,  those retained 
throughout the lifetime of the device. The index may vary from -4 to +5, and the associated 
attributes are as specified in Table 2.1. 

Block 1 / 0  Devices. Device types 0 and 1 are associated with disk-resident Block 1/0 
devices. In the present implementation, 0 and 1 are in fact equivalent. A distinction was 
made, however, in the old Univac version and may reappear in future versions, 
type 1 should be avoided. 

so use of 

Warning: Types 0 and 1 are available only if Block 1/0 has been 
implemented for a specific machine and operating system. 

FORTRAN 1 / 0  Devices. TYPEX values of 3 and 4 correspond to direct-access 
devices implemented through FORTRAN 77 direct-access files. As this type of 1/0 is 
machine-independent, it is available on any computer equipped with a FORTRAN 77 
compiler. Block 1 /0  should be preferred, however, if available because of its superior 
performance. 

The only difference between types 3 and 4 is the choice of internal PRU, as specified 
by Table 2.2. If nothing is known beforehand about the record size mix that the device 
will handle, chose TYPEX =- 3. If it is known that the device is to handle only fairly 
large records (of the order of 500 words or more), or if the device will be Paged, select 
TYPEX = 4.  Be sure also to read Remark 2.7. 

i 2-12 



$2.5 DEVICE DESCRIPTORS 

Table 2.1 
The Device Type Index (TYPEX) 

T YPEX Device t ype  

0 

1 

2 

394 

5 

-4 t o - 1  

Block 1/0 on disk 

Block 1/0 on disk (reserved for 
future use; see Remark 2.8) 

Block 1 / 0  on drum (obsolete) 

FORTRAN direct access 

“Core device” in blank common 

FORTRAN sequential access 
(obsolete, see Remark 2.9) 

Table 2.2 
Internal PRU for FORTRAN 1 / 0  Devices 

Machine T YPEX Internal PRU 
size in words 

Univac 

CDC 

VAX and IBM 

3 
4 

3 
4 

3 
4 

28 
112 

64 
256 

32 
128 

2-13 



Section 2: DEVICE MANAGEMENT 

Core Devices. TYPEX = 5 specifies a “core device”: a word-addressable device resident 
in main storage, more specifically blank common. This is of course a scratch storage facility, 
which disappears when the user program stops executing. Core devices find application in 
fancy local data management, but they are not selected by everyone. 

REMARK 2.6 

Type indices should not be intermixed during the lifetime of a file-resident device. For example, 
suppose a permanent-file device is created with TYPEX = 3. When the device is opened again 
as an “old” file, index TYPEX = 3 should be specified, and no other. The only exception is that 
TYPEX = 0 might be used to open an existing FORTRAN 1/0 device and read (never write) 
from i t ,  but this subterfuge does not work on all computers. The 1/0 Manager does not check for 
TYPEX-mixups when you open a device (it has no easy way of knowing); but EZ-GAL does check 
for it,  as the value of TYPEX a t  the time of device creation is saved in the library file header. 

REMARK 2.7 

In previous IOM versions, TYPEX was called the equipment code indez ,  as it truly characterized 
the physical residence medium: drum, disk, tape, extended core. With the gradual disappearance 
of drums and tapes, and a trend to get away from hardware details, the index now characterizes 
primarily the device access method. 

REMARK 2.8 

Device type 2 identified Block 1 / 0  on drum devices connected to old Univac 1107 and 1108 
computers. As drums have disappeared from the computer scene, TYPEX = 2 has no present 
use, but is kept in reserve for possible applications in the future. 

REMARK 2.9 

Negative TY PEX values were used in previous versions for handling tape-resident sequential- 
access devices. In the present version, they can be used for opening and closing sequential-access 
FORTRAN files, but such files cannot be positioned, read, or written through the IOM. These 
device types exist only to support old FORTRAN 66 programs. (FORTRAN 77 programs can 
dynamically open and close such files through the OPEN and CLOSE statements, which are now 

I 
I standard part of the language.) 

$2.5.2 Device Options Index 

The options index OPTX is an integer in the range -6 to +12 that characterizes device 
permanency and accessihility attributes. For example: is this a new, old or scratch device? 
are writes allowed? etc. 

The most commonly used values of OPTX are the machine-independent values listed 
in Table 2.3. These are applicable to devices resident in auxiliary storage. For core-resident 
devices (TYPEX = 5 ) ,  OPTX = 0 is automatically assumed. 

I 

I 

Less common values of OPTX, which have meaning only on specific machines, are 
listed in Table 2.4. 

2-14 



s2.5 DEVICE DESCRIPTORS 

42.5.3 Device Capacity Limit (LIMIT) 

The device-capacity limit parameter (LIMIT) specifies the maximum number of words a 
device may hold. This specification has effect only on newly created devices. Default 
values are given in Table 2.5. 

On Univac, the LIMIT specification is used in the construction of the @ASG-file 
specification for Block 1/0 devices, which must specify a maximum number of disk tracks. 
On other computers, LIMIT is simply used as a safeguard against rogue expansion of disk 
files attributable to user-program errors. 

§2.5.4. External PRU Size Parameter 

A specific external PRU size (XPRU) in words may be specified at device open time. A 
zero value requests the IOM default, which is word-addressing (XPRU=l). 

The default setting is highly recommended (read $2.3.4). PRU sizes other than the 
default should be specified only if there is a very good reason for it; for example, to read 
Block 1/0 files created by another program that uses XPRU > 1 (e.g., DAL files). 

There are certain constraints on the selection of multiword XPRU. The external PRU 
size must divide exact ly  the internal PRU size (to find out about the latter, consult Sections 
2.1.3-2.1.4). This rule includes the limit case in which the two sizes coincide, but the 
external PRU size must never exceed the internal PRU size. For example, suppose that 
the internal PRU size is 128 words. Then the only legal external PRU are the powers 2n, 
where n is 0 to 7.  

52.5.5. Logical Units 

For FORTRAN 1/0 devices (TYPEX = 3 and 4) ,  the 1/0 Manager associates the LDI 
with a FORTRAN logical unit at  the time the device is opened. From then on, the logical 
unit is used to  request read, write and close services to the FORTRAN Run-Time Library. 
The IOM programmer never deals with the logical unit, however, only with the LDI. 

The correspondence between LDI and logical units is maintained in an internal table, 
which is initialized at  compile time using a DATA statement. Table 2.6 shows a typical 
correspondence table used on the VAX version. Note that units 5 and 6 are skipped as 
these are commonly connected to the line-reader and system-print files, respectively. 

The default correspondence is not only machine-dependent but site-dependent. The 
latter becomes necessary on operating systems such as Univac’s Exec-1100, under which 
certain unit numbers are reserved for specific function at the installation’s discretion. 
Changing the default correspondence table involves a recompilation of DMGASP. But the 
table can also be changed at run time (usually once and for all at user-program start) 
through entry point DMUNIT ($4.9). 

The NICE programmer that plans to use FORTRAN 1/0 devices should be generally 
aware of the following: 

1. Try to avoid non-IOM use of units 1-4, 7-20. Use of units 5-6 for read-print is safe. 

2-15 



Section 2: DEVICE MANAGEMENT 

Table 2.3 
Machine-Independent Values of OPTX 

OPTX Opt ions 

0 Open scratch device 

3 Open existing device as read-only 

4 Open existing device allowing writes 

6 Open new device and catalog as 
permanent file (public on Univac) 

-5 As OPTX = 3 if file exists, otherwise 6 

-6 As OPTX = 4 if file exists, otherwise 6 

Table 2.4 
Machine-Dependent Values of OPTX 

OPTX Options Machine 

2 Link LDI to the file already 
assigned to run 

5 As O N ”  = 6 ,  but catalog the file 
as private 

7 As OPTX = 6, but catalog the file 
as private read-only 

8 As OPTX = 6, but catalog the file 
as public read-only 

Univac 

Univac, CDC 

Univac 

Univac 

9-12 As OPTX = 5-8, respectively, but do not Univac 
catalog the file if the run ends abnormally 

2-16 



$2.5 DEVICE DESCRIPTORS 

Table 2.5 
Default Device Capacity 

Device Type Computer De fault LIMIT 

Disk-resident CDC zz4 words 

IBM 6,400,000 words 

Univac 1024 tracks 
(1 track = 1728 words) 

VAX 6,400,000 words 

Core-resident All 20,000 words 

Table 2.6 
Default LDI-Logical Unit Correspondence 

(VAX Version) 

LDI Logical Unit 

1-4 1-4 

5-16 7-18 

2-17 



Section 2: DEVICE MANAGEMENT 

2. If problems with units 1-20 develop, you may have to use DMUNIT. The default LDI- 
unit table may be seen by calling DMSTAT (53.6) with an ‘LDTF’ argument, or using 
CLIP directive *LDT/F. 

3. If you also use CLIP, avoid units 30-40. 

$2.5.6. The File-Length Recovery Problem 

The length or extent  of a direct-access device was defined in $2.2.1 as the index of the 
highest PRU written (the end-of-information, or EOI). The PRU that follows the EO1 is 
called the next f ree  location, or NEXT. 

The length attribute is important for devices resident on permanent disk files that are 
to be reopened and eztended with more records. Imagine, for example, that you want to 
append records. If the EO1 is not accurately known, a big gap may appear in the middle 
of the file, or, even worse, existing data may be inadvertently written over. 

But the seemingly trivial matter of retrieving the exact length from the operating 
system when an existing file is reopened turns out to be surprisingly difficult. This is due 
to a combination of minor problems, which together produces a big problem. 

Lack of Resolution. With the possible exception of Unix, no operating system main- 
tains file-length information down to external-PRU “granularity”. For example, Univac’s 
Exec-1100 will tell you only “the highest track written”. Since one track is 1782 words, 
this is three orders of magnitude too coarse for a word-addressable device. 

Machine Dependency. Retrieval of even the coarse size information is by no means 
easy. Procedures vary from system to system, and use of convoluted assembly-language 

information is virtually impossible: their manuals won’t tell you where it is. 
A Gaping Hole in FORTRAN 77. Although FORTRAN-77 1 / 0  is, on the whole, a 

considerable improvement over FORTRAN-66 I/O, the ANSI standard inexplicably passes 
over a n  important point: there is no way to inquire how big a direct-access file is. (For a 
sequential-access file, at  least one can read until encountering the EOF, but direct-access 
files do not have EOF marks.) 

The only clean solution to this vexing problem is to keep file extent information (EO1 
or NEXT) in the file itself. The file extent information must be stored near the file start 
so that it may be read at  open time. The first word of the file (word 0) emerges as a 
sensible choice. This is in fact the scheme used by the global data manager EZ-GAL for 
word-addressable GAL files and sector-addressable DAL files. 

By design, the 1 / 0  Manager assumes nothing about device contents. It follows that 
the process of retrieving the extent data and transferring it to the 1 / 0  manager must be 
done by the user program. Entry point DMNEXT (34.5) is provided for this purpose. 

I 

I 
~ 

I code is often required. There are some systems (e.g., CDC’s NOS) where access to this 

2-18 



$2.6 FILE S Y S T E M S  

$2.6 FILE SYSTEMS 

Auxiliary storage devices reside on system files. Thus, the IOM user is expected to be 
aware of the peculiarities of the file system used by the host operating system. 

In particular, the programmer should be aware of the conceptual distinction between 
internal f i l e  names, external f i l e  names, and logical units. This distinction exists, in one 
form or another, in all operating systems. 

1. Each operating system has its own jargon for describing system actions: there is no 
standard terminology. 

2. Each operating system has its own capabilities and limitations: there are no standard 
functions. 

3. Some of the things we would like to do can’t be done easily on some operating systems: 
there are no perfect systems. 

When talking about file conventions, one must therefore carefully specify the host operating 
system. 

REMARK 2.10 

The material that follows is “refresher” material that need not be covered on first reading. 

§2.6.1. File Convent ions on Univac 

Under Univac’s Exec-1100 system, a file can be referenced by two names: external and 
internal. 

The ezternal file name is the one under which facilities for file residence are requested 
from the operating system, and also the identifier kept in the master file directory in the  
case of a permanent file (catalogued f i l e  in Univac terminology). External file names of 
permanent files must be unique across an installation. 

The internal f i le  name is the (usually short) identifier through which the file is refer- 
enced by a running program; these identifiers need be unique only for a specific run. 

The two names: external and int,ernal, may be connected through a @USE control 
statement (61 issued before or during program execution. If no @USE statement is issued, 
the names coalesce. 

For a FORTRAN 1/0 statement such as 

14 is known as the logical unit number, which is simply a pointer to a table of internal file 
names maintained by the run-time FORTRAN 1/0 library. On Univac, the internal file 
name associated with unit 14 is 

‘14’ 

2-19 



Sectlon 2: DEVICE MANAGEMENT 

that is, the character-encoded representation of the unit number (left-justified with blank- 
fill).  

52.6.2. File Conventions on CDC 

On CDC operating systems such as SCOPE [7] and NOS [8] the two terms logical file name 
(LFN) and permanent f i l e  name (PFN) are used in the sense of internal and external file 
name, respectively. 

All files attached to a run, whether temporary (local files in CDC terminology) or 
permanent, are referenced by a logical file name, but only permanent files have a permanent 
file name. (Thus, for local files one may think of the LFN as functioning as both internal 
and external file names.) 

Linking of local and permanent file names is accomplished by a potpourri of operating 
system commands, such as CATALOG, ATTACH, GET and SAVE. These operations are 
not only file-status dependent ( i .e . ,  vary according to whether the file is new or already 
exists), but often change names from SCOPE to NOS. There is no clean USE statement 
as in Univac. Also, many CDC installations have unique local conventions designed to 
enhance job security. 

A FORTRAN logical unit number such as 14 is conventionally associated with the 
logical file name 

‘TAP E 14’ 

$2.6.3. File Conventions on VAX 

The VAX/VMS operating system [9] offers a clean set of file conventions, much better than 
either Univac or CDC. 

External file names identify physical devices belonging to a “file owner”, while internal 
file names are known as logical device names. (This bears no relation to CDC terminology.) 
The two names may be linked through an ASSIGN statement [9]. 

A FORTRAN logical unit such as 14 is identified with the logical name 

‘FORO 1 ! t .  DAT’ 

Significant differences with Univac and CDC are: 

1. The ASSIGN may refer to only components of the file physical device identifier; for 
example, the directory name. 

2. All files are permanent, i .e.,  retained in the user’s directories, unless explicit ly declared 
as “scratch”. This feature is characteristic of interactive operating systems. By way of 
contrast, Univac and CDC permanent files must be explicitly declared as such. 

2-20 



$2.6 FILE S Y S T E M S  

$2.6.4. File Conventions Summary 

File conventions are summarized in Table 2.7. 

Table 2.7 
File-Systems Terminology Summary 

Univac CDC VAX 

External filename Permanent filename Physical device name 
Internal filename Logical filename Logical device name 
Temporary file Local file Scratch file 
Catalogued file Permanent file Directory file 
USE Numerous ways ASSIGN 
ASG ATTACH CREATE, OPEN 

2-21 



Sectlon 2: DEVICE MANAGEMENT 

$2.7 EXTERNAL DEVICE NAMES 

Logical devices are identified at open time by ezternal device names. The name may be 
ezplicitly supplied by the user, or be implicitly selected by the IOM if the user supplies a 
blank name. Implicit naming rules are shown in Table 2.8. 

General recommendations regarding explicit versus implicit device naming are: 

1. The user should specify the name for an auxiliary-storage device that resides, or will 
reside, on a permanent file. 

2. The user should let the IOM pick up the name if the device is to reside on a scratch 
file or core storage. 

For devices resident on auxiliary storage (usually disk), the external device name is either 
the ezternal file name, or contains that name in some fashion. Rules to this effect are 
elaborated upon in subsequent subsections. 

52.7.1. External Device Names on Univac 

The most general form of the external device name on Univac is 

Qualifier*Filename(cycle) 

where the Qualifier and cycle parts are optional. 
The total length of the device name string is restricted to 24 characters. Qualifier 

and Filename may be of 1 to 12 characters in length, and the characters may include 
any combination of letters A-2, digits 0-9, dollar sign, and dash. Default qualifiers are 

the range 1 through 63 and is rarely used. 
I installation dependent; consult local manuals if in doubt. The file cycle is an intceger in 

Examples of legal IJnivac external device names: 

QP35'1tESPON I)T$05* FORM-2-12-82 

REMARK 2.11 

Thcre is no need to include an ending period; but if given, it is treated as a file name terminator. 

REMARK 2.12 

Read and/or write key specifications are not permitted (they make little sense for data files, 

I anyway). 

$2.7.2. External Device Names on CDC 

External device names of Univac-like form: 

Qualifier *Filename( Cycle) 

I 2-22 



Y 

52.7 EXTERNAL DEVICE NAMES 

Table 2.8 
Default External Device Names 

Case Computer Default Name 

LDI never activated CDC ‘TAPEzz’, where zz is 
a logical unit number 

IBM Presently same as VAX 

Univac ‘UNITzz’, where zz is 
a logical unit number 

VAX ‘FOROzx’, where zx is 
a logical unit number 

LDI previously activated all Previous name 

2-23 



Section 2: DEVICE MANAGEMENT 

are accepted on the CDC version for Block 1/0 auxiliary storage devices resident on per- 
manent files. 

On the SCOPE operating system (also in NOS/BE), the total length of the external 
device name is restricted to 20 characters. The qualifier is interpreted as the user’s ID, 
and the filename as the permanent file name (PFN). Qualifier and filename are restricted 
to a maximum of 8 and 7 characters, respectively. Only alphanumerics may be used, i . e . ,  
letters A-Z and digits 0-9. Restrictions on user’s ID are installation-dependent; consult 
local system documentation as appropriate. File cycles are frequently used on SCOPE. If 
the cycle specification is omitted, the highest catalogued cycle is assumed if attaching an 
existing permanent file, or the highest cycle plus one if cataloguing a new permanent file. 
(Many CDC installations restrict the number of simultaneously catalogued cycles to  five.) 

On NOS systems, previous constraints on length and legal characters apply, with the 
following additional restrictions. The qualifier is interpreted as the user’s catalog number, 
which is fixed for each user and assigned by the installation. The file cycle specification is 
ignored, as NOS files have no cycle numbers. 

For local files of any type, or for FORTRAN 1/0 devices, only the filename part is 
allowed. This stems from restrictions in the OPEN statement of CDC’s FORTRAN 77 
(FTN5) compiler. See Remark 2.14 for ways of circumventing problems caused by this 
restriction. 

Of the two example Univac device names (§2.7.1), the first one: 

QP35*RESPON 

is also acceptable as a Block 1/0 device on SCOPE if QP35 is a legal user’s ID (on most 
installations it will be). On NOS, QP35 must be the user’s catalog number (or the catalog 
number of another user to whom the file belongs). The second example name is illegal 
because of the presence of dollar sign and dash characters; moreover, it exceeds the seven- 
character limit for the file name. 

REMARK 2.13 

To manipulate permanent Files rrealed with FORl’IiAN I/O, a two-stage process involving control 
cards is inevitable. Existing permanent files that are to be opened by the IOM should be attached 
before the run, then the local file name used as external device name. Created files that are to 
be cataloged as permanent should be cataloged on SCOPE after the run,  or predefined on NOS 
before the run .  

52.7.3. External Device Names on VAX 

On VAX computers, the IOM user has the option of using either Univac-like device names: 
or VAX/VMS names. The former are internally converted to the latter. 

Consider the 
Univac-like external device name: 

The name conversion process is best illustrated through examples. 

PR*RESPONSESDAT(8) 

2-24 



$2.7 EXTERNAL DEVICE NAMES 

The 1/0 Manager converts this to 

P R : RES P 0 N S ES . D AT ;8 

which is a legal VAX/VMS file identifier. The 12-character Univac-like file name, RE- 
SPONSESDAT, is split into a VAX file name, RESPONSES, and a file extension, DAT, 
because VAX file names are restricted to 9 characters. The Univac cycle specification 
becomes a VAX/VMS file version number. The most difficult to grasp is the qualifier 
transformation. On the VAX, PR is assumed to be the logical name of the directory 
to which the file belongs; this logical name must be declared (explicitly or through the 
LOGIN.COM file) by an ASSIGN command. For example, assume that the directory in 
question is (FELIPPA.NICE.SHOCK]; then 

$ ASSIGN [FELIPPA.NICE.SHOCK] PR: 

effectively links PR to that directory. If file RESPONSES.DAT;8 is created by the IOM, 
it will then appear in [FELIPPA.NICE.SHOCK]. 

In the frequent case where the file belongs to the default directory the qualifier may 
be omitted. 

Of course the IOM also accepts standard VAX/VMS file names. For example, 

PR:RESPONSES.DAT;8 
1 F EL IP PA. S K Y I S 0 LVE R. D AT 

The total length of the external device name string is restricted to 48 characters. 
Explicit version numbers are rarely needed, because VAX/VMS works very much like 

CDC’s SCOPE. Defaults are the highest version number for an existing file, or the highest 
version number plus one for a new file. 

VAX/VMS directory names and file names can only have alphanumeric characters. 
Thus Univac-minded users are advised to leave out dollar signs and dashes. 

2-25 



Section 2: DEVICE MANAGEMENT 

s 

THIS PAGE LEFT BLANK INTENTIONALLY. 

2-26 



3 
Basic Operations 

3-1 



Sectlon 3: BASIC OPERATIONS 

The basic operations provided by the 1/0 Manager DMGASP are: open device, close 
device, position device, write record to device, read record from device, and list state 
information. Entry points to perform these operations are listed in Table 3.1, and described 
in Sections 3.1-3.6. 

Alternate entry points are offered for the open, close, position, write, and read oper- 
ations. Three-argument entry points of the form DMxAST (where x = D,F,P,W,R) are 
compatible with previous IOM versions. The newer entry points DMOPEN, DMCLOS, ... 

I 
I 
I 

etc., have the same first three arguments but include a trailing TRACE argument. 

REMARK 3.1 

The global manager EZ-GAL calls the four-argument entry points if its MSC (Master Source 

entry points. 

I 

I 

I 
Code) is preprocessed with the distribution key TRACE on; otherwise it uses the three-argument 

3-2 



$2.7 EXTERNAL DEVICE NAMES 

Table 3.1. Basic-Operation Entry Points 

Operation Entry 
Point 

Open device DMOPEN 
DMDAST 

Close device DMCLOS 
DMFAST 

Position device DMPOST 
DMPAST 

Write device DMWRIT 
DMWAST 

Read device DMREAD 
DMRAST 

List information DMSTAT 
DMLAST 

Arguments See 

LDI, EDNAME, DDPARS, TRACE §3.1 
LDI, EDNAME, DDPARS 

LDI, DELETE, 0, TRACE $3.2 
LDI, DELETE, 0 

LDI, DLOC, MODE, TRACE $3.3 
LDI, DLOC, MODE 

LDI, ARRAY, SIZE, TRACE $3.4 
LDI, ARRAY, SIZE 

LDI, ARRAY, SIZE, TRACE $3.5 
LDI, ARRAY, SIZE 

KEY §3.6 
LOSD, LPKT, LTAB 



Section 3: BASIC OPERATIONS 

$3.1 OPEN DEVICE: DMOPEN/DMDAST 

This operation opens (activates, assigns, declares) a logical device resident on main or 
auxiliary storage. A device must be opened before any 1 / 0  activity is attempted on it. 

$3.1.1. Entry DMOPEN 

The calling sequence is: 

I CALL DMOPEN ( L D I ,  EDNAME, D D P A R S .  TRACE) 

where 

LDI If LDI > 0, index of logical device to be opened. Should this LDI be 
active, the old device is closed first (see Remark 3.2). 

If LDI = 0 on entry, scan the Logical Device Table for an already active 
EDNAME. If found, its LDI is returned in this argument (which must 
therefore be a variable in the calling program), and the open operation 
skipped. If not found, then search the Logical Device Table for the first 
inactive LDI, set LDI to this value, and continue as in the LDI > 0 case. 

If LDI < 0, begin as if LDI = 0, but if an active EDNAME is not found, 
set LDI to ILDIl and then proceed as in the LDI > 0 case. The absolute 
value is returned in the argument. (Note that if ILDI( happens to be 
active on entry, the old device will be closed first.) 

EDNAME A character string containing the ezternal device name described in $2.7. 
This text string must be supplied left-adjusted and blank filled. The 
name is assumed to be terminated by the first occurrence of a blank char- 
acter, or by the implied length of EDNAME, whichever occurs first. T h e  
reader is referred to Sections 2.7.1-2.7.3 regarding legal device names for 
specific conipu ters. 

If a blank value is specified for this argument ( z . e . ,  EDNAME = ' '), a 
dcfault, name is selected following the rules set forth in Table 2.8. 

DDPARS A four-word integer array that supplies the device descriptor parameters 
discussed in $2.5. 

DDPARS(1) = TYPEX: device type index (see $2.5.1). 

DDPARS(2) = OPTX: device options index (see $2.5.2). 

DDPAItS(3) =- LIMIT: device capacity limit in words ($2.5.3) i t  a - i t w  or 

scratch device. If zero, the default size specified in Table 2.6 IS ,!nsumOd 

I 

3-4 



$3.1 OPEN DEVICE: DMOPEN/DMDAST 

For a core-resident device (TYPEX = 5), LIMIT is the effective blank- 
common length allocated, starting at  the offset prescribed in DDPARS(4). 

DDPARS(4) = XYRU for an auxiliary storage device (TYPEX 5 4), or 
BCOFF for a core (blank-common-resident) device (TYPEX = 5 ) .  

For an auxiliary storage device: 
XPRU > 0: external PRU size in words. Must comply with restrictions 
noted in $2.5.4. 

XPRU = 0: select XPRU = 1 (word addressing). 
XPRU = -1: select XPRU = 1 and buffer 1 / 0  to this device if a page 
buffer has been previously declared. If no buffer has been specified, 
XPRU = -1 is the same as 0 or 1. 

For a core device, BCOFF is the blank-common offset in words of the 
device storage allocation. If BCOFF = 0, the device allocation is to 
start at the first word in blank common. For these devices, XPRU = 1 
is implied. 

TRACE A positive integer used as identifying label in error traceback. Don’t put 
a zero or negative value here; these are reserved for internal use. 

REMARK 3.2 

The “free LDI if busy” strategy has many important applications. But sometimes it can lead to 
problems; if this is the case, the user program should either make use of the LDI = 0 feature, or 
first call LMLDIF (55.7) to obtain a free slot in the Logical Device Table. 

REMARK 3.3 

If the device name of a newly created permanent file clashes with that of an existing file, an error 
results on systems without automated file cycling. The Univac DMGASP tries to circumvent 
this problem for Block I/O devices by cyclically changing the last character in EDNAME and 
resubmitting the request. Sometimes this contrivance works, sometimes it doesn’t. 

$3.1 2. Entry DMDAST 

Entry point DMDAST performs the same service as DMOPEN, but with TRACE omitted 
from the calling sequence: 

CALL DMDAST (LDI. EDNAME, DDPARS) 

DMDAST is compatible with the old 10M versions (the DAST is for “declare auxiliary 
storage”) and will be kept as alternate entry point indefinitely, since DMOPEN in fact 
calls DMDAST. 

3-6 



Section 3: BASIC OPERATIONS 

$3.1.3. Open Message 

The open function writes an  informative message on the bulk-print file. For an auxiliary- 
storage device, the format is typified by the example 

+++ OPEN, Ldi: 8, F i l e :  RES.GAL, Attr: Block I/O, NEW, Paged 

which is largely self-explanatory. The message above is for a Paged Block 1/0 device, 
created on permanent file RES.GAL (a VAX filename) and which will be referenced through 
LDI number 8. For a FORTRAN 1/0 device, the logical unit number will be shown before 
the Attributes text. 

The open message for a core-resident device is more concise. Example: 

+++ OPEN, Ldi: 12, BC( 30001: 76000) 

This says that LDI number 12 will point to a core device that occupies word locations 
30001 through 75000 of blank common. No device name is shown. I 

REMARK 3.4 

The message is written out just before the open request is submitted to either the operating systert, 
or the FORTRAN 1/0 library. Thus, the appearance of the message does not necessarily mean 
that the operation was successful. If an error condition is detected, a diagnostic will immediately 
follow (assuming, of course, that the error-file unit is the same as the bulk-print-file unit). 

REMARK 3.5 

On the Univac version, the message given for Block 1/0 devices has a different format, It is the 
image of the @ASG request submitted to the Exec-1100 system, followed immediat~ly by 1 he 
image of the @USE request that links the external and internal file names. For FORTRAN i:O 
devices, the message has the standard format shown above. I 
REMARK 3.6 

If the case of a conditional open (LDI 5 0), no message appears if the operation is skipped because 
EDNAME is already open. Otherwise the message will display the actual LDI chosen by the 1/' ) 

manager. 

REMARK 3.7 

Some NICE programmers view these messages as nuisances, especially in highly interactive graphic 
processors when the hulk-print-file unit is assigned to the screen. The messages may be s!ippressed 

~ 

(forever or temporarily, as desired), by calling entry point DMSOCM (54.7). 

3-43 



53.2 CLOSE DEVICE: DMCLOS/DMFAST 

$3.2 CLOSE DEVICE: DMCLOS/DMFAST 

This operation breaks the connection between a Logical Device Index (LDI) and the asso- 
ciated storage facilities. The storage resources are released to the operating system, and 
cease to exist if the device was of scratch type. 

$3.2.1. Entry DMCLOS 

The calling sequence is 

CALL DMCLOS (LDI, DELETE, 0, TRACE) 

where 

LDI If greater than 0, Logical Device Index of device to be closed. If this 
LDI is not active, no operation is performed. 

If zero, close all active devices. 

LDI < 0 means conditional close. If the “NICE macroprocessor” flag 
has been set on using DMACRO (§4.2), the close request is ignored. 
Otherwise device lLDIl is closed. 

DELETE If zero, do a normal close. 
If one, close and delete if device resides on a permanent disk file. See 
Remark 3.9. 

TRACE A positive integer used as identifying label in error traceback. Don’t put 
a zero or negative value here; these are reserved for internal use. 

REMARK 3.8 

A nonzero third argument is used to flag calls by DMOPEN 

REMARK 3.9 

Close-and-delete may not always work correctly for nlock 1,’O devires on some operating systems 
If you encounter problems, perform a normal close (DELETE = 0) and delete the file after the 
run .  

REMARK 3.10 

The close-all option (LDI = 0) is sometimes handy for run-termination routines. Btit dlr71’t use It 
if CAI, or DAL files may be a,morig the active devices (see following remark). 

REMARK 3.11 

Never use DMCLOS (or DMFAST) to close a GAL or DAL device under EZ-GAL control: you 
may leave data stranded in the header-TOC buffers! Use GMCLOS [Z] instead. 

3-7 



Section 3: BASIC OPERATIONS 

REMARK 3.12 

Explicit closing is important for Paged 1/0 devices that have been written on during the run 
unless periodically flushed (see Sections 2.4.3-2.4.4). 

REMARK 3.13 

On some systems, such as CDC’s SCOPE, explicit closing of newly created permanent files or 
modified “old” permanent files is essential to the file survival. 

fj3.2.2. Entry DMFAST 

Entry point DMFAST performs the same close service as DMCLOS (with an exception 
noted below), bu t  with TRACE omitted from the calling sequence: 

CALL DMFAST (LDI, DELETE, 0) 

where the meaning of the  first two arguments is the same as in DMCLOS. The ”close-all” 
specification LDI = 0, however, i s  not recognized. 

DMFAST is compatible with the old versions of the 1/0 Manager. FAST stands for 
“free auxiliary storage”, which is Univac’s terminology for file closing. 

1 $3.2.3. Close Message 

The close function writes an  informative message on the bulk-print file. For an auxiliary- 
storage device, t he  format is typified by the example 

+++ CLOSE, Ldi:  8, File: RES.CAL 

which is self-explanatory. 

REMARK 3.14 

As in the case of the OPEN message ($3.1.3), the CLOSE message is written out beforr the 1 1  t, 3 

service is requested, and a n  error diagnostic may follow. However, close-file errors are corr:p.. . 
tively rare. 

REMARK 3.15 

On Univac, the message format for a Block 110 device i s  different,: it will show the QFREI? image 
submitted to the Exec-1100 operating system. For FORTRAN 1/0 devices, the message has the 
standard form shown above. 

REMARK 3.16 

In the case of a conditional close, no  message appears if the operation is skipped 

REMARK 3.17 

Open and rlosc messages may be altogether sripprcsscd by calling DMSOCM (54.7) 

I 

I 3-8 



53.3 POSITION DEVICE: DMPOST/DMPAST 

$3.3 POSITION DEVICE: DMPOST/DMPAST 

This operation is used to position a device to the PRU location where the next read or  
write is to take place. This is necessary when information is to be stored or retrieved in 
non-sequential manner, as discussed at length in $2.3.3. 

$3.3.1. Entry DMPOST 

The calling sequence is: 

CALL DMPOST ( L D I ,  DLOC, MODE, TRACE) 

where 

LDI 

DLOC 

MODE 

TRACE 

Logical Device Index of device to be positioned. 

Integer that specifies the location, in external PRUs, to which the device 
is to be positioned according to argument MODE. 

Flags specifying positioning mode: 

1: DLOC words from start of device. 

0: DLOC external PRUs from start of device. 

-1: DLOC words from the current device location. 

-2: DLOC external PR.Us from the current device location. 

If the device is word-addressable, MODE = 1 and 0 are equivalent, and 
so are MODE = -1 and -2. 

A positive integer used as identifying label in error traceback. L!:~v’t put 
a zero or negative value here; these are reserved for internal use. 

R E M A R K  3.18 

If the device is not word-addressable (ie., XPRU >l) ,  and MODE is 1 or - 1 ,  the 1/0 Manager 
converts the word count given in argument DLOC to a “covering” external-PRU count as follows. 
Let 

COVPRU = (IABS (DLOC) +XPRU- 1) /XPRU 

where all variables are of type integer, and FORTRAN truncated-division rules are used. Then 
the new device location (NEWLOC) is 

NEWLOC 2: COVPRU if MODE = 1 

NEWLOC = CULOC 4- ISIGN(COVPRU,DLOC) if MODE = -1  

3-9 



Section 3: BASIC OPERATIONS 

This is checked for validity, and inserted in the Logical Device Table overwriting CDLOC. 

53.3.2. Entry DMPAST 

Entry point DMPAST performs the same service as DMOPEN, but with TRACE omitted 
from the calling sequence: 

CALL DMPAST (LDI, DLOC, MODE) 

DMPAST is compatible with the old versions of the 1/0 Manager. 

. 

3-10 



53.4 WRITE RECORD: DMWRIT/DMWAST 

$3.4 WRITE RECORD: DMWRIT/DMWAST 

The write operation transfers one IOM record from a specified location in main storage to  
a logical device starting at the current device location. 

$3.4.1. Entry DMWRIT 

The calling sequence is: 

CALL DMWRIT (LDI, ARRAY. SIZE. TRACE) 

where 

LDI Logical Device Index. 

ARRAY A numeric array that contains the record to be transmitted. Avoid use 
of character variables; see Remarks 3.17 and 3.18. 

SIZE Size of records in words; must be greater than zero. 

TRACE A positive integer used as identifying label in error traceback. Don’t use 
a zero or negative value; these are reserved for internal use. 

The record is stored beginning at  the current device location (CDLOC) of device LDI. On 
an error-free return from DMWAST, the current device location is advanced by 

I + (SIZE - l) /XPRU 

where XPRU (integer) is the external PRU size. 
XPRU = 1, and the location is simply advanced by SIZE. 

If the device is word-addressable, 

If an  error condition occurs, the device location is not updated. 

REMARK 3.19 

The formula for updating CDLOC is the same regardless of whether the device is Paged or 
Unpaged. For Paged devices, t h e  Inratinn iipdnte is strirt.ly logical and generally hearo no relation 
to data transfers between the  Page Buffer Pool and disk files (physical writes to other Paged devices 
may result aa side effect of page exchanges). 

REMARK 3.20 

If the current device location (CDLOC) happens to lie beyond the end-of-information, the CDC 
version of DMGASP extends the EO1 with zero-filled dummy records in the case of Block 1/0 
devices. 

5 

REMARK 3.21 

If ARRAY is of type CHARACTER, proper handling of subroutine linkage in \:AX-FORTRAN 
requires an explicit call-by-reference. This means that the second argument must be specified as 

3-11 



Sectlon 3: BASIC OPERATIONS 

%REF (ARRAY ) 

Even with this modification, it should be remembered that DMWRIT writes only full words 
(4-character groups on the VAX or similar 32-bit machines). Thus, byte-addressing has to be 
simulated a t  higher levels than DMGASP. 

REMARK 3.22 

Univac and CDC FORTRAN compilers will accept an ARRAY argument of type CHARACTER 
without complaining. The result of the write operation will be generally wrong, however, unless 
ARRAY happens to be word-aligned, because neither DMWRIT nor DMWAST account for char- 
acter offsets in these word-addressable machines. Safe handling of a character record require prior 
copy to a “scratch” Hollerith array, which is then presented to DMWRIT or DMWAST. 

I 53.4.2. Entry DMWAST 

Alternate entry point DMWAST provides the same write-record service as DMWRIT, b u t  
lacks the TRACE argument: 

I CALL DMWAST ( L D I .  ARRAY. SIZE) 

This entry point is compatible with previous versions of the 1/0 Manager. 

c 

3-12 



53.5 RECORD: DMREAD/DMRAST 

53.6 RECORD: DMREAD/DMRAST 

The read operation transfers one IOM record from a logical device, starting a t  the current 
device location, to a specified location in main 'storage. 

$3.5.1. Entry DMREAD 

The calling sequence is: 

CALL DMREAD ( L D I ,  ARRAY, SIZE, TRACE) 

where 

LDI Logical Device Index. 

ARRAY A numeric array that will receive the record. 

SIZE Size of record in words; must be greater than zero. 

TRACE A positive integer used as identifying label in error traceback. Don't use 
a zero or negative value; these are reserved for internal use. 

The record is read starting a t  the current device location (CDLOC) of device LDI. On an 
error-free return from DMREAD, the current device location is advanced by 

1 + (SIZE - l)/XPRU 

where XPRU (integer) is the external PRU size. If the device is word-addressable, XPRU 
= 1, and  the  location is simply advanced by SIZE. 

If an error condition is detected, the device location is not updated. 

REMARK 3.23 

The formula for updating CDLOC is the same regardless of whether the device is Paged or 
Unpaged. For Paged devices, the update is strictly logical and generally bears no resemblance to 
actual data transfers between the Page Ruffer Pool and the disk (physical writes to other Paged 
devices may occur as a side result of page exchanges). 

REMARK 3.24 

If the resulting new device location would overshoot the end-of-information, an error condition is 
diagnosed and no read occurs. 

REMARK 3.25 

If ARRAY is of type CHARACTER, proper handling of subroutine linkage under VAX-FORTRAN 
requires an explicit call-by-reference. This means that the second argument must be specified as 

%REF( ARRAY) 

3-13 



Section 3: BASIC OPERATIONS 

Even with this modification, it should be remembered that DMREAD moves only full word8 (4- 
character groups on the VAX and similar 32-bit machines). Thus, byte-addressing has to be 
simulated at higher levels than DMGASP. 

REMARK 3.26 

Univac and CDC FORTRAN compilers will accept an ARRAY argument of type CHARACTER 
without complaining. The result of the DMREAD operation will be generally wrong, however, 
unless ARRAY happens to be word-aligned, because neither DMREAD nor DMRAST account for 
character offset on these word-addressable machines. Safe handling of a character record requires 
a read into a “scratch” Hollerith array, which is then copied to the destination character string. 

$3.5.2. Entry DMRAST 

Alternate entry point DMRAST provides the same read-record service as DMREAD, but 
lacks the TRACE argument: 

CALL DMRAST ( L D I ,  ARRAY, SIZE) 

This  entry point is compatible with previous versions of the 1/0 Manager. 

3-14 



$3.6 LIST INFORMATION: DMSTAT/DMLAST 

53.6 LIST INFORMATION: DMSTAT/DMLAST 

Entry point DMSTAT or DMLAST may be accessed to print selected state information 
related to the activities of the 1/0 manager. 

$3.6.1. Entry DMSTAT 

The calling sequence is: 

CALL DMSTAT (KEY) 

where KEY is a four-character string that specifies the information to be printed: 

KEY = ‘LDT ’ Print Logical Device Table, showing active devices only. Print legends 
are explained in Table 3.2. 

KEY = ‘LDTF’ Print Logical Device Table in full. 

KEY = ‘PBT ’ Print contents of Page Buffer Table. 

KEY = ‘PIOS’ Print Paged 1 / 0  statistics if this feature has been used. Interpretation 
of these data requires familiarity with paging systems, however. 

KEY = ‘PKT ’ Print 1 / 0  Packet used to set up Block 1/0 requests. Interpretation of 
these data requires system-level expertise. 

KEY =I ‘OSD ’ Print Operation Status Descriptors. This is an array of variables which 
retains information about the last traceable 10M operation performed. 
OSD display is primarily useful after error conditions. Print legends are 
explained in Table 3.3. 

All output produced by DMSTAT goes to the bulk-print file, which is by default unit 6. 
(NICE programmers may reset this unit number through CLIP’S *PRT directive.) 

3-15 



Section 3: BASIC OPERATIONS 

Table 3.2 
LDT Print Explanation 

Print Caption Ezplanation 

Ldi 

External 
DevName 

Unit 

EC 

TYP 

Sta 

Ext PRU 

Int PRU 

Cdloc 

Next 

Limit 

Userwords 
read 

Logical Device Index 

External Device Name as stored in the LDT 
(may continue on the next print line) 

FORTRAN Logical Unit paired with this LDI; 
meaningless if Block 1/0 or core device 

Equipment Code: a nonzero value flags an active 
device; negative value flags core device 

Codified device type: BIO for Block I/O, FDA for 
FORTRAN Direct- Access, BC for blank-common resident 

Codified device status: NEW, OLD, SCRatch 
as determined by the device options index 

External PRU in words 

Internal PRU in words 

Current device location in external PRUs 

Next free location in external PRUs 

Device capacity limit in external PRUs 

Counter of words retrieved by the user program; 
computed as sum of sizes of records read successfully 
to this device using DMREAD/DMRAST since the device 
was opened. (For some device types, this value may 
differ significantly from a physical-word-read count) 

3-16 



$3.6 LIST INFORMATION: DMSTAT/DMLAST 

Table 3.2 
LDT Print Explanation (concluded) 

Print Caption Ezplanat ion 

Userwords 
written 

Active devices 

Full devices 

Reads 

Writes 

Words Xfd 

Counter of words stored by the user program; 
computed as sum of sizes of records written successfully 
to this device using DMWRIT/DMWAST since the device 
was opened. (Same comment as above) 

Self-explanatory 

Count of devices for which a “device capacity 
exceeded” error has occurred 

Counts of calls made to DMREAD/DMRAST for 
all devices since run start 

Counts of calls made to DMWRIT/DMWAST for 
all devices since run start 

Two values follow. The first is the sum of 
userwords transferred using successful calls to 
DMREAD/DMRAST and DMWRIT/DMWAST 
for all devices since run start. 
The second value is similarly defined, but measures 
physical words transferred. 

3-17 



Sectlon 3: BASIC OPERATIONS 

Table 3.3 
OSD Print Explanation 

Print Caption Explanation 

Last TRACE- 
able Entry 

Ioercd 

Ld i 

TYPex 

Optx 

Lcargl,Lcarg2 

Locdev 

Sizrec 

Nwxwrd 

1 / 0  status 

Shows which of the following IOM entry 
points was called last: DMOPEN/DMDAST, 
DMCLOS/DMFAST, DMFLUB, DMPOST/DMPAST 
DMREAD/DMRAST, DMWRIT/DMWAST. Following 
values are “leftovers” from this entry point. 

1 / 0  error code (cf. $6.1) on exit from last traceable entry 

LDI value supplied as 1st argument to last entry 

Device type index for the LDI shown (DDPARS 
supplied if last entry was DMOPEN/DMDAST) 

Device option index for the LDI shown (DDPARS 
supplied if last entry was DMOPEN/DMDAST) 

DLOC, MODE arguments of DMPOST/DMPAST if 
this was the last entry, otherwise zero 

Current device location in external PRUs 

Record size given to DMWRIT/DMWAST or 
DMREAD/DMRAST if last entry; otherwise zero 

“User words” actually transferred by DM WRIT/ 
DMWAST or DMREAD/DMRAST if last entry. May be less 
t,han Sizrec if a n  ahnormal condition was detected. 

The 1/0 status value (cf. $6.1) returned by either 
the O/S (Block I/O) or FRTL (FORTRAN I/O) on the last 
service request. Nonzero O/S values are not 
necessarily error codes on all systems. 
Some IOM versions show two values here. 

3-18 



$3.6 LIST INFORMATION: DMSTAT/DMLAST 

53.6.2. Entry DMLAST 

Entry point DMLAST provides some of the print services of DMSTAT. It is provided for 
compatibility with earlier versions of the 1/0 manager. 

The calling sequence is: 

CALL DMLAST (LOSD,  LPKT,  LTAB) 

where 

LOSD If nonzero, print Operation Status Descriptors. 

LPKT If nonzero, calls for a listing of the first (LPKT+l) words of the 1/0 
Packet array for Block I/O. 

LTAB If greater than zero, calls for a listing of the Logical Device Table showing 
only active devices. 

If LTAB is zero, the LDT is not printed. 

If LTAB = -1, the complete LDT is printed, including inactive devices. 

3-19 



Section 3: BASIC OPERATIONS 

THIS PAGE LEFT BLANK INTENTIONALLY. 

3-20 



4 
Supplemental 

Operations 

4-1 



Sectlon 4: SUPPLEMENTAL OPERATIONS 

In addition to the basic services described in Section 3, DMGASP provides a set of sup- 
plemental entry points to perform advanced or specialized operations. 

These entry points are alphabetically listed in Table 4.1, and covered in Sections 4.1- 
4.9. The user should be warned that, with the exception of DMFLUB, none of these entry 
points check for the validity of its inputs. 

4-2 



$3.6 LIST INFORMATION: DMSTAT/DMLAST 

Table 4.1. Supplemental-Operation Entry Points 

Ope rat ion Entry 
Poirtt 

Error-abort run DMABRT 

Set macroprocessor flag DMACRO 

Flush Page Buffer Pool DMFLUB 

Set device capacity limit DMLIMT 

Set device extent DMNEXT 

Declare Page Buffer Pool DMPOOL 

Suppress open-close messages DMSOCM 

Reset LDI-to-unit table DMUNIT 

Set external PRU size DMXPRU 

A rgu m e nt s See 

$4.1 

MF $4.2 

0, 0, TRACE $4.3 

LDI, LIMIT $4.4 

LDI, NEXT $4.5 

PB, LP, NP $4.6 

M $4.7 

LDI, NLDI, UNIT $4.8 

LDI, XPRU $4.9 

4-3 



Sectlon 4: SUPPLEMENTAL OPERATIONS 

$4.1 ERROR-ABORT RUN: DMABRT 

Entry point DMABRT generates an abnormal run stop. 

The calling sequence is: 

CALL DMABRT 

On most computers, the error-abort is forced using a division by zero. 

4-4 



84.2 SET MACROPROCESSOR FLAG: DMACRO 

$4.2 SET MACROPROCESSOR FLAG: DMACRO 

DMACRO can be used to turn the "NICE macroprocessor" flag on or off. Setting this flag 
to on affects the outcome of conditional-close operations ($3.2). 

The calling sequence is: 

CALL DMACRO (MP) 

Setting MP = 1 turns the macroprocessor flag on, while MP = 0 turns it off. The default 
state is zero. 

4-5 



Section 4: SUPPLEMENTAL OPERATIONS 

$4.3 FLUSH PAGE BUFFER POOL: DMFLUB 

DMFLUB scans the Page Buffer Pool (PBP) for modified pages belonging to non-scratch 
devices, and writes them out. This operation protects data integrity on permanent files in 
the event of an abnormal run termination (for explanation, see $2.4). 

The calling sequence is: 

CALL DMFLUB (0. 0, TRACE) 

where 

TRACE A positive integer used as identifying label in error traceback prints. 

REMARK 4.1 

Nonzero first and second arguments are reserved for internal use. 

REMARK 4.2 

If no Page Buffer Pool has ever been defined, or no Paged 1 / 0  devices exist, DMFLUB does 
nothing . 

I 

~ 

4-6 



54.4 S E T  DEVICE CAPACITY LIMIT:  DMLIMT 

54.4 SET DEVICE CAPACITY LIMIT: DMLIMT 

Entry point DMLIMT can be used to reset the device capacity limit (LIMIT) on a device 
to a specified value. This overrides the value supplied in DDPARS at device-open time 
( § 3 4 *  

The calling sequence is: 

CALL DMLIMT ( L D I ,  L I M I T )  

where 

LDI Logical Device Index. 

LIMIT The value of LIMIT in ezternal PRUs. 

DMLIMT has applications similar to that of DMNEXT (54.5), but is rarely used. 

REMARK 4.3 

DMLIMT does not check for the validity of its arguments. 

REMARK 4.4 

Note that LIMIT is given in external PRU units and not in words, as wm the case for DDPARS(3) 
in $3.1. 

REMARK 4.5 

DMLIMT has effect only on active devices. Using DMLIMT on an inactive device is meaningless 
but causes no harm. 

4-7 



Sectlon 4: SUPPLEMENTAL OPERATIONS 

i4.5 SET DEVICE EXTENT: DMNEXT 

Entry point DMNEXT can be used to set the end of information (NEXT) on a device to 
a specified value. This value characterizes the device extent. 

The calling sequence is: 

CALL DMNEXT ( L D I ,  NEXT) 

where 

LDI Logical Device Index. 

NEXT The value of NEXT in ezternal PRUs. 

The main application of DMNEXT is to set the exact length of a just-open logical 
device resident on a permanent disk file when this length is maintained in the file itself. 
Motivation for this is given in 52.5.6. The procedure is illustrated by the following example. 

A new permanent, word-addressable file is opened and written. When the user pro- 
gram is through with the file, its length in words (which may be retrieved from LMNEXT, 
§5.10), is stored in a reserved “header record” at  the file start. The file is closed. 

On a subsequent run, the file is reopened and the header record read. The exact 
length is retrieved, and supplied to the 1/0 Manager through DMNEXT. 

REMARK 4.6 

DMNEXT does not check for the validity of its arguments. 

REMARK 4.7 

DMNEXT has effect only on active devices. Using DMNEXT on an inactive device is meaningless 
though it  causes no harm. 

REMARK 4.8 

If DMNEXT is not used, the 1/0 Manager sets an approximate (and conservative) value for 
N E X T  obtained from syat,em information. But if it can’t get any information (as in the case of 
FORrRAN 1 /0  devices), it sets NEXT = LIMIT. 

4-8 



54.6 DECLARE PAGE BUFFER POOL: D M P O O L  

54.6 DECLARE PAGE BUFFER POOL: DMPOOL 

Entry point DMPOOL declares a Page Buffer Pool (PBP) for subsequent use in Paged 
I/O support. 

The  calling sequence is: 

where 

PB 

LP 

NP 

CALL DMPOOL (PB, LP, NP) 

An integer array dimensioned 

LP*NP + 2*NP + 2 words 

which will be used by the 1/0 manager as workspace for Page Buffer 
Pool (LP*NP words) and Page Buffer Table (2'NP words). Two words 
are used to store protection data. 

Page length in words. Must be an ezact multiple of the internal PRlJ 
size (52.2.4 and Table 2.2) for optimal 1/0 efficiency. Best results are 
generally achieved when LP is 4 to  16 times the internal PRU (see 
Appendix C). 
If LP 5 0, the PBP declaration is ignored, and no diagnostics are given. 

The  number of pages in the buffer. As a very rough guide, NP should 
be of the order of 10 times the number of Paged 1/0 devices that  may 
be simultaneously active. 

If NP 5 0, the PBF declaration is ignored, and no diagnostics are  given. 

REMARK 4.9 

DMPOOL must be called before any Paged 1/0 device is opened. A good place to put the call is 
a t  the start of the user program. 

REMARK 4.10 

Assuming that LP is greater than 0 and NP is greater than 0, DMPOOL performs the following 
actions: saves LP and NP, computes and saves the blank-common address of PB (which, however, 
doesn't have to he in hlank common), clears the workRpace, and stores protection keys. 

REMARK 4.11 

Once the PB array is specified using DMPOOL, the user program should never modify it. 

REMARK 4.12 

All Paged 1 / 0  devices subsequently opened will share the Buffer Pool. The number of Paged I/O 
devices that are simultaneously active should be no more than NP/8 to prevent thrashing. 

REMARK 4.13 

If Paged I/O devices have different internal PRU sizes (a rare event), try to make LP a common 
multiple of the internal PRU sizes. 

4-9 



I Sect ion 4: S U P P L E M EN TAL 0 P E R A T  IO N S 

~ REMARK 4.14 

DMPOOL could conceivably be called more than once during a run with the same or different 
arguments. But be sure that all Paged Z/O devices are closed before calling it anew. 

4-10 



i4.7 SUPPRESS OPEN/CLOSE MESSAGES: D M S O C M  

54.7 SUPPRESS OPEN/CLOSE MESSAGES: DMSOCM 

Entry point DMSOCM may be used to suppress permanently or temporarily informative 
messages printed by the 1/0 manager when opening and closing logical devices (Sections 
3.1.3, 3.2.3). 

The calling sequence is: 

CALL DMSOCM (MI 

where M is the number 0- subsequent messages to be suppressed. 

M If M > 0, suppress the next M messages. For permanent suppression, 
make M large, e.g., M = 10000. 

If M = 0, print is restored. 

4-11 



Sectlon 4: SUPPLEMENTAL OPERATIONS 

54.8 RESET LDI-UNIT TABLE: DMUNIT 

Entry point DMUNIT may be used to  reset the LDI-to-logical-unit correspondence table. 

The calling sequence is: 

CALL DMUNIT (LDI. NLDI, UNIT) 

where 

LDI Logical Device Index of first device whose logical unit is to be changed. 

NLDI Number of logical units to be changed; these correspond to devices LDI, 
..., LDI+NLDI-1. 

UNIT Logical unit for device LDI (integer). Logical units for devices LDI+l,  
..., LDI+NLDI-1 are generated by incrementing UNIT. 

An example should clarify the generation scheme. Suppose that the user-program devel- 
oper wishes to use 

11, 12, ..., 18 

as logical units associated to logical devices 1 through 8. The following call would accom- 
plish that: 

CALL DMUNIT (1, 8, 11) 

REMARK 4.15 

DMUNIT does not check for the validity of its arguments. 

REMARK 4.16 

Never change the logical unit of an active LDI. In fact, DMUNIT should be called at the start of 
the program, before any device activity occurs. 

4-12 



$4.9 S E T  EXTERNAL PRU SIZE: DMXPRU 

$4.9 SET EXTERNAL PRU SIZE: DMXPRU 

Entry point DMXPRU may be used to reset the external PRU size of a device to a specified 
value. 

The calling sequence is: 

CALL DMXPRU ( L D I ,  XPRU) 

where 

LDI Logical Device Index. 

XPRU External PRU size in words. 

This ha3 applications similar to those discussed for DMNEXT (§4.5), but is more exotic 
and daring. 

REMARK 4.17 

DMXPRU does not check for the validity of its arguments. 

REMARK 4.18 

DMXPRU has effect only on uctioe devices. Using DMXPRU on an inactive device is meaningless 
but causes no harm. 

4-13 



Section 4: SUPPLEMENTAL OPERATIONS 

THIS PAGE LEFT BLANK INTENTIONALLY. 

4-14 



Information 
Retrieval 

Functions 

5-1 



1 Sectlon 5 :  INFORMATION RETRIEVAL FUNCTIONS 

I The 1/0 Manager provides a comprehensive set of entry points that return state informa- 
tion maintained in its internal tables. These are referenced as integer functions of the form 
LMzzzz, where zzzz is a mnemonic identifier. 

Table 5.1 lists alphabetically the information-retrieval entry points discussed in Sec- 
tions 5.1-5.15. 

REMARK 5.1 

Information retrieval functions pertaining to error-handling (e.g., LMERCD, LMIOST) are cov- 
ered in Section 6. 

REMARK 5.2 

None of these functions check for legal input arguments. 

REMARK 5.3 

In early DMGASP versions, this information could be directly extracted by the user program 
from a named common block. Experience has shown, however, that this practice had detrimental 
effects on program modularity and transportability. Hence the provision of a comprehensive set 
of inforrnation-retrieval functions has been implemented. 

5-2 



$4.9 SET EXTERNAL PRU SIZE: DMXPRU 

Table 5.1. Information-Retrieval Functions 

Ope rat ion Entry Arguments See 
Point 

Retrieve device location LMDLOC 

Retrieve equipment code LMEQCD 

Inquire by Logical Device LMINQL 

Inquire for name in LDT LMINQT 

Inquire for file existence LMINQX 

Retrieve internal PRU LMIPRU 

Retrieve first free LDI LMLDIF 

Retrieve LDI that matches unit LMLDIU 

Retrieve device capacity limit LMLIMT 

Retrieve device extent LMNEXT 

Retrieve userwords written LMNUWW 

Retrieve options index LMOPTX 

Retrieve type index LMTYPX 

Retrieve logical unit LMUNIT 

Retrieve external PRU LMXPRU 

~ - - ~~ 

LDI 

LDI 

LDI, EDN, DDP 

EDN 

EDN 

LDI 

LDIBEG 

UNIT 

LDI 

LDI 

LDI 

LDI 

LDI 

LDI 

LDI 

$5.1 

$5.2 

$5.3 

$5.4 

$5.5 

$5.6 

$5.5 

$5.8 

$5.9 

$5.10 

$5.11 

55.12 

$5.13 

$5.14 

$5.15 

5-3 



Section 5: INFORMATION RETRIEVAL FUNCTIONS 

$5.1 RETRIEVE DEVICE LOCATION: LMDLOC 

Entry point LMDLOC, referenced as an integer function, returns the current location of a 
device identified by its LDI. 

The function reference is: 

DLOC = LMDLOC (LDI) 
I 

where 

LDI Logical Device Index. 

LMDLOC Returns the current device location in external PRUs. 

If the device is inactive, or the argument is out of range, the value 
returned is meaningless. 

5-4 



55.2 RETRIEVE EQUIPMENT CODE: LMEQCD 

$5.2 RETRIEVE EQUIPMENT CODE: LMEQCD 

Entry point LMEQCD, referenced as an integer function, returns the equipment code of a 
logical device identified by its LDI. 

The function reference is: 

ICODE = LMEQCD (LDI) 

where 

LDI Logical Device Index. 

LMEQCD Returns the device equipment code: 
zero if device is inactive; 
> 0 if active and resident on auxiliary storage; 
-1 if active and resident in blank common (core device). 

If the argument is out of range, the value returned is meaningless. 

REMARK 5.4 

Inasmuch as equipment code numbers for auxiliary storage are machine dependent, the main use 
of LMEQCD is for testing whether a specific LDI is active or inactive. 

5-5 



I Sectlon 5: INFORMATION RETRIEVAL FUNCTIONS 

$5.3 INQUIRE BY LDI: LMINQL 

Entry point LMINQL inquires about the characteristics of a specific device identified by 
its 1,DI. 

The function reference is: 

ISTAT = LMINQL (LDI, EDN, DDP) 

1 where the input is: 

LDI Logical Device Index. 

and the outputs are: 

LMINQL Zero if device is inactive. 
1 if device is active. 

A character array that receives the external device name if the device is 
active. If the device is inactive, the character array contains blanks. 

A four-word integer array. If device is active, the four device descriptors 
discussed in 53.1 are returned here. 

If the device is inactive, all four words are set to zero. 

EDN 

I 
I 

DDP 

I 

6-6 



$5.4 INQUIRE FOR EDN IN L D T :  L M I N Q T  

$5.4 INQUIRE FOR EDN IN LDT: LMINQT 

Entry point LMINQT finds out whether its device-name argument is stored in the Logical 
Device Table, and if so, whether it is active or inactive. 

The function reference is: 

L D I  = LMINQT (EDN) 

where 

EDN External Device Name. 

LMINQT Zero if device name is not in LDT. 
+LDI if name matches EDN of LDI-th device and is active. 
-LDI if name matches EDN of LDI-th device but is inactive. 

REMARK 5.5 

On the VAX, both argument and LDT device names are expanded to full 64-character system 
names (using the $PARSE RMS service) before the names are compared for equality. 

5-7 



Sectlon 5: INFORMATION RETRIEVAL FUNCTIONS 

i5.5 INQUIRE FOR EDN EXISTENCE: LMINQX 

Entry point LMINQX, referenced as an integer function, inquires about the existence of 
an external device name as the identifier of an existing permanent file. 

The function reference is: 

ISTAT = LMINQX (EDN) 

EDN External device name, as in $3.1. 

LMINQX 0: file does not exist. 

1: file exists and is neither GAL nor DAL. 

10: file exists and is a GAL. 

11: file exists and is a DAL. 

-1: file exists but is locked by this process or another process (VAX). 

-2: file exists but is inaccessible because owner denies access (VAX). 

5-8 



$5.6 RETRIEVE INTERNAL PRU: LMIPRU 

$5.6 RETRIEVE INTERNAL PRU: LMIPRU 

Entry point LMIPRU, referenced as an integer function, returns the internal physical 
record unit (PRU) of a device identified by its LDI. 

The function reference is: 

IPRU = LMIPRU ( L D I )  

where 

LDI Logical Device Index. 

LMIPRU Internal PRU size of device. 

If the device is inactive, or the argument is out of range, the value 
returned is meaningless. 

5-9 



Sectlon 5: INFORMATION RETRIEVAL FUNCTIONS 

55.7 RETRIEVE FIRST FREE LDI: LMLDIF 

Entry point LMLDIF, referenced as an integer function, returns the first free “LDI slot” in 
the Logical Device Table. The LDT search extent and direction is controlled by the index 
argument. 

The function reference is: 

L D I  = LMLDIF (LDIBEC) i 
I where 

LDIBEG Specifies LDT search extent and direction as follows. 
> 0: scan from LDIBEG (inclusive) forward. 
< 0: scan from highest LDI (presently 16) backwards. 
0: return the highest legal LDI. 

If LDIBEG is nonzero, returns the first inactive LDI found. If none is 
found, zero is returned. 

I 

LMLDIF 

If LDIBEG = 0, LDLDIF returns the highest legal LDI (presently 16). 

5-10 



$5.8 RETRIEVE LDI THAT MATCHES UNIT: LMLDIU 

56.8 RETRIEVE LDI THAT MATCHES UNIT: LMLDIU 

Entry point LMLDIU, referenced as an integer function, answers the question: which LDI 
has an associated logical unit that matches its argument? 

The function reference is: 

LDI = LMLDIU (UNIT) 

where 

UNIT 

LMLDIU 

Logical unit number (a positive integer). 

LDI whose associated logical unit matches the argument, otherwise zero. 

5-11 



Sectlon 5: INFORMATION RETRIEVAL FUNCTIONS 

$6.9 RETRIEVE DEVICE CAPACITY LIMIT: LMLIMT 

Entry point LMLIMT, referenced as an integer function, returns the capacity limit of a 
device identified by its LDI. 

The function reference is: 

LIMIT = LMLIMT (LDI) 

where 

LDI Logical Device Index. 

LMLIMT Device capacity limit in external PRUs. 

If the device is inactive, or the argument is out of range, the value 
returned is meaningless. 

REMARK 5.6 

A negative LIMIT flags a “full” direct accesa device; i e . ,  one that was the target of a previous 
write-attempt beyond ita capacity limit. 

5-12 



I . .  

55.10 RETRIEVE DEVICE E X T E N T :  L M N E X T  

55.10 RETRIEVE DEVICE EXTENT: LMNEXT 

Entry point LMNEXT, referenced as an integer function, returns the next-free-location of 
a device identified by its LDI. This value defines the device extent (52.2). 

The function reference is: 

NEXT = LMNEXT (LDI) 

where 

LDI Logical Device Index. 

LMNEXT The next-free-location in external PRUs. 

If the device is inactive, or the argument is out of range, the value 
returned is meaningless. 

I -  

5-13 



Sectlon 5:  INFORMATION RETRIEVAL FUNCTIONS 

I 

$6.11 RETRIEVE NUMBER OF USER WORDS WRITTEN: LMNUWW 

Entry point LMNUWW, referenced as in integer function, returns the number of words 
written on a specific logical device since it was opened. 

The function reference is: 

NW = LMNUWW (LDI) 

where 

LDI 

LMNUWW 

Logical Device Index. 

Number of user words written since the device was open. (The sum of 
sizes of records successfully written to this device through DMWRIT or 
D M WAST . ) 

If the argument is out of range, the value returned is meaningless. 

REMARK 5.7 

This entry point is useful when the user program has to take some action according whether a 
device has been written on during the run. 

REMARK 5.8 

If device index LDI has been opened more than once during a run, LMNUWW returns only the 
number of user words transferred since the last open. 

5-14 



I .  

I -  

2 RETRIEVE DEI ICE OPTIONS INDEX: L M O P T X  

55.12 RETRIEVE DEVICE OPTIONS INDEX: LMOPTX 
Entry point LMOPTX, referenced as in integer function, returns the LDT-stored options 
index of a device identified by its LDI. 

The function reference is: 

OPTX = LMOPTX ( L D I )  

where 

LDI Logical Device Index. 

LMOPTX The options index presently stored in the LDT. 

If the device is inactive, or the argument is out of range, the value 
returned is meaningless. 

REMARK 5.9 

The value returned is not necessarily the one supplied in DDPARS(2) to DMOPEN to DMDAST 
(§3.1), if this was a negative value. For example, if DDPARS(2) = -6, LMOPTX returns 6 or 4, 
depending on whether a new device was created or not. 

5-15 



I Sectlon 5: INFORMATION RETRIEVAL FUNCTIONS 

$5.13 RETRIEVE DEVICE TYPE INDEX: LMTYPX 

Entry point LMTYPX, referenced as in integer function, returns the LDT-stored type 
index of a device identified by its LDI. 

The function reference is: 

TYPX = LMTYPX (LDI) 

where 

LDI Logical Device Index. 

LMTYPX The type index presently stored in the LDT. 

If the device is inactive, or the argument is out of range, the value 
returned is meaningless. 

5-16 



~~~ 

$5.14 RETRIEVE LOGICAL UNIT: 

$5.14 RETRIEVE LOGICAL UNIT: LMUNIT 

M IT 

Entry point LMUNIT, referenced as an integer function, returns the logical unit number 
associated with a device specified by its LDI. 

The function reference is: 

LU = LMUNIT (LDI) 

where 

LDI Logical Device Index. 

LMUNIT Logical unit number. 

If the device is inactive, or the argument is out of range, the value 
returned is meaningless. 

REMARK 5.10 

This entry point may be viewed as the "dual" of LMLDIU (56.8) because 

LDI = LMLDIU (LMUNIT (LDI)) 

5-17 



Section 5 :  INFORMATION RETRIEVAL FUNCTIONS 

§ S . l S  RETRIEVE EXTERNAL PRU: LMXPRU 

Entry point LMXPRU, referenced as an integer function, returns the external physical 
record unit (PRU) of a device identified by its LDI. 

The function reference is: 

IPRU = LMXPRU (LDI)  

where 

LDI Logical Device Index. 

LMXPRU External PRU size of device in words. 

If the device is inactive, or the argument is out of range, the value 
returned is meaningless. 

5-18 



6 
Error Handling 

, 



I Sectlon 6: ERROR HANDLING 

I Operations described in Sections 3-4 and which contain a TRACE argument may be 
aborted or only partially executed on account of error conditions detected within the 
1/0 Manager proper, or by the operating system. 

This section covers error processing, explains error messages, and describes entry 
points that NICE programmers may use to store and retrieve error-related information, 
and to modify default error handling. These entry points are listed in Table 6.1. 

REMARK 6.3 

The term error, used in the present context, means lack of success in performing an action. A 
more accurate word would be failure. However, we shall conform here to the common term, error, 
because that usage is universally accepted and because failure has an extreme connotation. 

, 

0-2 



. 

$6.1 ERROR PROCESSING OVERVIEW 

Table 6.1 Error-Handling Entry Points 

Operation Entry Arguments See 
Point 

Identify user subprogram DMUSER 

Test error condition LMERCD 

Extract error information DMEINF 

Retrieve 1/0 status LMIOST 

Defuse fatal errors DMEASY 

Specify error terminator DMETER 

Take fatal error exit DMFATE 

Print error trace stack DMPETS 

SUBNAM $6.3 

IERR $6.4 

IERR, EMSG, K $6.5 

J $6.6 

KERR $6.7 

UPGERR $6.8 

NAME, EKEY $6.9 

-2, PRTFIL $6.10 

6-3 



Sectlon 6: ERROR HANDLING 

56.1 ERROR PROCESSING OVERVIEW 

$6.1.1. Error Classification 

The I/O Manager finds out about error conditions in two ways: either through an internal 
validity check, or by receiving an error indication from the 1/0 system. Whatever the 
source, the IOM calls the central error management subroutine DMSERR, which serves 
the whole of NICE-DMS. 

DMSERR first logs a short message on the error print file (normally unit 6). These 
error messages are listed and explained in $6.2. 

Next, errors are classified into three types: 

1. Warning-only. Control returns to the calling program, and execution continues. The 
user program may at  this point interrogate the error condition, and take appropriate 
act ion. 

2. Fatal. Execution is terminated after more detailed printout. If the user program has 
specified an error-termination routine, DMSERR calls it. (Error termination routines 
are useful for cleanup operations such as buffer-flushing and file closing.) 

3. Catastrophic. The run is aborted immediately. Even if an error-termination routine 
has been specified, it is not called. 

Catastrophic errors are those that may reflect serious problems in the user program logic. 
For example: destruction of the Logical Device Table or the Page Buffer Pool caused by 
array overspill in the user program. For obvious reasons, this error type is not controllable 
by the user program or affected by the run environment. 

Classification of non-catastrophic errors into fatal and warning-only depends on two 
factors: the run enoironment, and user program specifications. If the user program has 
specified nothing, the IOM uses the run environment as the only criterion: 

Interactive Run. A non-catastrophic error is treated as warning-only, unless a total error 
count maintained by DMSERR exceeds an internally set limit (usually 50).  If the error 
count limit is exceeded, a fatal error exit is taken. 

Batch Run. A non-catastrophic error is treated as fatal. 

How does the IOM know about the run environment? On first entry, it queries the oper- 
ating system for such information, and saves the answer in its internal tables. 

The preceding “default” treatment can be modified, within certain limits, by the user 
program through entry points DMEASY ($6.7) and DMETER (56.8). 

6-4 



§6.1 ERROR PROCESSING OVERVIEW 

56.1.2. Error Terminology 

Applications programmers making use of NTCE-DMS should be aware of the following 
terminology, which is used in subsequent sections. 

Error code 

Error k e y  

Error message 

Error trace stack 

I/O status 

An integer value which is set to a nonzero value when an error 
condition occurs. 

A four-letter character string that uniquely specifies the error type. 

The diagnostic text placed by DMSERR on the error print file. 

The ETS is a data structure optionally maintained by NICE-DMS, 
and which records the tree of internal calls. (The presence or ab- 
sence of ETS depends on parameterization of the EZ-GAL and DM- 
GASP master-source-code preprocessing prior to compilation.) 

An integer value, or set of integer values, returned by the operating 
system to identify errors detected in an 1/0 transaction. The IOM 
saves this value (or values) in an  internal array. 

6-5 



I Section 6: ERROR HANDLING 

56.2 ERROR DIAGNOSTICS 
I 

I $6.2.1. Error Message Format 

~ 

Error messages issued by DMSERR are of the form 

*Subnam* EKEY, diagnostic text 

where Subnam is the name of the subroutine that calls DMSERR (often the same subrou- 
tine that detected the error), EKEY is a four-letter error key, and “diagnostic text” is a 
short explanatory message. 

This message may be followed by one or two additional lines that furnish additional 
details such as the 1/0 status value. 

Note the disappearance of error code numbers from the message. 
DMGASP version, error codes have less importance than in previous versions. 

In the present 

I 96.2.2. List of Error Messages 

All possible DMSERR error messages are listed below in key-alphabetical order. Many 
of these are native to the global database manager EZ-GAL and are included here for 
completeness only. 

In the following message list, items in italics denote variable names or numbers that 
are printed as part of the error message. 

CFDS, Cannot find dataset 

I EZ-GAL level error. 

I CRTB, Char record too big 

EZ-GAL level error. 

DCLE, Device close error, file: Filename 

The operating system has reported an  error during a device-close operation. This is a very 
unusual condition. Track the 1/0 status code for further details. 

I 

DCOE, Device connect error, file: Filename 

This can only occur for VAX/VMS Block I/O devices. The VAX/VMS record management 
service (RMS) has reported an error condition when trying to carry out a file-connect 
scvice. 

6-6 



56.2 E R R O R  DIAGNOSTICS 

DEXE, Device extend error, file: Filename 

Not presently active; reserved for future implementations. 

DINE, Device inquire error, file: Filename 

A device-existence query performed through a FORTRAN INQUIRE statement caused an 
error return. 

DIRO, Device is read-only 

A write-record operation was attempted on a device opened in read-only mode. The 
operation is ignored. 

DNCL, Device not connected to library 

EZ-GAL level error. 

DNDA, Device is not direct access 

EZ-GAL level error. 

DN WA, Device is not word addressable 

EZ-GAL level error. 

DOPE, Device open error, file: Filename 

A device-open operation failed. This is a common error, especially in interactive work. If 
declaring an existing (OLD) file, the most likely causes are: 
1.  Illegal file name. 
2. File does not exist. 
3. File has write-permission denied (write-locked) by the user program, or another pro- 

gram. 
Access permission denied by file owner. 4. 

If file is created by the open operation (NEW or SCRATCH): 
1. Illegal file name. 
2. On some operating systems such as CDC’s NOS: filename duplicates that of an existing 

catalogued file. 
On VAX: file creation was attempted on a directory that denies write permission. 3. 

If the error cause is not evident, look up the status code printed on the next line in the 
appropriate system manual. 

0-7 



The result of a positioning operation using DMPOST or DMPAST would result in the new 
device position being either negative or over the device capacity limit. The new position 
is not stored. 

I 6-8 



$6.2 E R R O R  DIAGNOSTICS 

ILDS, Illegal dataset name 

I .  

EZ-GAL level error. 

ILOI, Illegal OPTX index 

The device-assignment options index (OPTX) supplied to either DMOPEN or DMDAST 
is outside the legal range -6 to 12. The device-open operation is aborted. 

ILOP, Illegal operation 

EZ-GAL level error. 

ILRS, Illegal record size 

The size of a record presented to a record-transfer entry point is zero or negative. 

ILSN, Illegal sequence number 

EZ-GAL level error. 

ILTI, Illegal type index 

The device type index (TYPEX) presented to DMOPEN or DMDAST is outside the legal 
range -4 to 5 .  

ILXP, Illegal external PRU 

An external PRU size presented to DMOPEN or DMDAST does not exactly divide the 
internal PRU size (example: internal PRU 128 words, external PRU 24 words). This can 
never happen if the word-addressable default is used, which is the recommended setting. 

INDI, Inactive LDI 

An 1 /0  operation is attempted on a device that has not been previously opened. 

LDTD, Logical Device Table destroyed 

A protxv-tion kev stored i l l  front. of the auxiliary storage tables has heen destroyed. This 
is considered a catastrophic error. 

LDTF, Logical Device Table full 

Open-device request refused because all 16 slots in the Logical Device Table are in use. 

MIRE, Miscellaneous read error 
MIWE, Miscellaneous write error 

These are ‘(catch-all” errors for data-transfer situations that cannot be easily categorized. 
If the cause is not immediately apparent, and usually is not, the recommended procedure 

6-9 



I Sectlon 6: ERROR HANDLING 

is to record the 1/0 status code printed on the next line, and refer to the appropriate 
system manual. 

MROL, Modification of read-only library ignored 

EZ-GAL level error. 

NRFD, No room for descriptor 

EZ-GAL level error. 

ODDS, Operation on deleted dataset 

EZ-GAL level error. 

PBPD, Page Buffer Pool destroyed 

A protection key stored in front of the Page Buffer Pool has been altered. This is considered 

I 

~ 

l a catastrophic error. 

RBEI, Read beyond end of information 

A read operation through DMREAD or DMRAST specifies a record that extends beyond 
the end of information (NEXT). The operation is ignored. 

RBTS, Record buffer too small 

EZ-GAL level error. 

RODS, Read outside dataset Dsnarne 

I EZ-GAL error. 

SONA, Scyuwtial oyeratiori not available 

An operation other than open or close has been specified on a sequential-access device, 
i . e . ,  one opened with a negative TYPEX. 

TMOL, Too many open libraries 

EZ-GAL error. 

WODS, Write outside dataset Dsnarne 

EZ-GAL error. 

6-10 



$6.3 IDENTIFY USER SUBPROGRAM: DMUSER 

§0.3 IDENTIFY USER SUBPROGRAM: DMUSER 

The first executable statement of any user-program subroutine that calls a TRACE- 
equipped entry point should be a call to DMUSER. 

The calling sequence is: 

CALL DMUSER (SUBNAM) 

where 

SUBNAM A character string of up to eight characters that identifies the user- 
program subroutine (normally the subroutine name). 

REMARK 6.2 

This name will appear at  the “base” of ETS (Error Trace Stack) printouts. 

REMARK 6.3 

At the EZ-GAL level, this entry point is known as GMUSER, which has the identical effect and 
the same calling sequence. 

REMARK 6.4 

Before any call to DMUSER (or GMUSER) is made, NICEDMS assumes ‘USRPRG’ as its ETS- 
base identifier. 

REMARK 6.5 

Programs that access the 1/0 manager level only (not EZ-GAL) and only reference the old 
TRACE-less entry points (e.g., DMDAST in lieu of DMOPEN, and so forth) need not call 
DMUSER. 

6-11 



I Sectlon 6: ERROR HANDLING 
I 

$6.4 TEST ERROR CONDITION: LMERCD 

Entry point LMERCD, referenced as an integer function, furnishes the means of testing 
for orror conditions after a error-sensitive reference to the 1/0 Manager. 

The function reference is 

IERR = LMERCD (IERR) 

If an error condition has been detected in the previous IOM operation, a nonzero value is 
returned as both argument and function value. The double setting facilitates the use of 
LMERCD in conditional branching statements such as 

IF (LMERCD(K0DE) .NE. 0) CALL ERROR (KODE) 

REMARK 6.6 

LMERCD serves both the IOM and EZ-GAL levels of NICEDMS. It thus absorbs the function 
of LMIOER, which wag designed to retrieve IOM error codes only. 

REMARK 6.7 

There is no longer any significant correlation between the error code and a specific error type. On 
the contrary, the relation will frequently vary as new error conditions are introduced in NICE 
DMS, because these are internally sorted (by an ad-hoc table-building program) alphabetically 
on the error key. The error code serves only two purposes: indicates the presence of error by a 
nonzero value, and works as a “hook” for retrieving error keys and messages through DMEINF 
(§6.5). 

6-12 



56.5 E X T R A C T  ERROR INFORMATION: DMEINF 

56.5 EXTRACT ERROR INFORMATION: DMEINF 

Entry point DMEINF is used to extract the error key and error message, given the error 
code. 

The calling sequence is: 

CALL DMEINF (IERR. EMSG, K) 

where the input is: 

IERR Error code returned by LMERCD. 

and the outputs are: 

EMSG A character string that receives the error key in its first 4 locations, 
followed by a comma and a diagnostic message. The total length of the 
text string is returned in K.  If IERR is zero or is not a proper error 
code, ESMG is blanked and K set to zero. 

K The length of the message returned in EMSG. If the passed length of 
EMSG is insufficient to hold the whole message, it is truncated to that 
value, and K set to LEN(EMSG). 

REMARK 6.8 

In most cases the user program will be interested only in retrieving and testing the error key. The 
following illustrates a typical construction that tests for a device-open error. 

CHARACTER*4 KEY 
. . . . .  
CALL DMDAST (LDI, EDNAME, DDPARS) 
IF (LMERCD(1ERR) .NE. 0) THEN 

CALL DMEINF (IERR, KEY, K) 
IF (KEY .Eq. 'DOPE') THEN 

. . . . .  

. . . . .  
END IF 

END IF 

6-13 



Sectlon 6: ERROR HANDLING 

50.0 RETRIEVE 1 / 0  STATUS CODE: LMIOST 

Entry point LMIOST, referenced as an integer function, returns a 1/0 status code in effect 
since the last 1/0 operation. 

The function reference is: 

ICODE = LMIOST (J) 

where 

J Index to the 1/0 status array maintained by the 1/0 manager. Normally 
J = 1. 

J-th entry of the 1 / 0  status array. LMIOST 

REMARK 6.9 

These values are not only machine-dependent, but depend on whether FORTRAN 1/0 or Block 
I/O was used. In the case of FORTRAN 1/0, a few things about 1 / 0  status codes are described 
in the FORTRAN-77 standard. 

6-14 



$6.7 DEFUSE FATAL ERRORS: DMEASY 

jS.7 DEFUSE FATAL ERRORS: DMEASY 

Entry point DMEASY (named after “take it easy”) may be used to specify that subsequent 
fatal errors are to be treated as warning-only. 

The calling sequence is: 

CALL DMEASY (KERR) 

where 

KERR If KERR > 0, treat next KERR fatal errors as warning only. 
If KERR is zero, the standard error treatment of fatal errors is enforced. 
If KERR < 0, treat next IKERRl fatal errors as warning-only and suppress 
all diagnostic messages. For experienced programmers only. 

REMARK 6.10 

Each entry to DMSERR counts as one error for the purposes of decrementing KERR. 

REMARK 6.11 

This entry point is primarily useful for batch runs. 

REMARK 6.12 

The treatment of catastrophic error conditions is not affected. 

REMARK 6.13 

DMEASY supersedes one of the functions of an earlier “error handling” entry point DMHAST. 

6-15 



Section 6: ERROR HANDLING 

§6.8 SPECIFY ERROR TERMINATOR: DMETER 

Entry point DMETER may be called to specify an error termination routine to be called 
in the event of a fatal error termination. 

The calling sequence is: 

CALL DMETER (UPCERR) 

where UPGERR is the name of the error termination routine. This name must be declared 
EXTERNAL in the subprogram that calls UPGERR. 

In the event of a fatal error condition, DMSERR calls DMFATE, which checks whether an 
error-termination routine has been specified using DMETER. If so, it issues the equivalent 
of the calls 

CALL UPCERR ('NICE-DMS' , EKEY) 

where EKEY is the error key. 

REMARK 6.14 

UPGERR must not execute a RETURN. It will be futile, anyway, as the next statement in 
DMFATE is a call to unconditionally abort the run. 

REMARK 6.15 

UPGERR should not call DMSERR or DMFATE. 

REMARK 6.16 

DMETER supersedes functions of the obsolete entry points DMHAST and DMTERM. 

6-16 



56.9 TAKE FATAL ERROR EXIT:  DMFATE 

$6.9 TAKE FATAL ERROR EXIT: DMFATE 

In the event of a fatal error condition, DMSERR eventually calls subroutine DMFATE. 
This reference is described here, as it may occasionally be useful for inclusion at the user 
program level. 

The calling sequence is: 

CALL DMFATE (NAME. EKEY) 

where NAME is the name of the calling package, and EKEY an error key. 

If an error-termination routine has been specified through DMETER ($6.8) ,  DMFATE 
cleverly engineers a transfer to it. 

6-17 



I Sectlon 6: ERROR HANDLING 

$6.10 PRINT ERROR TRACE STACK: DMPETS 

The error trace stack (ETS) of NICE-DMS may be displayed through entry point DM- 
PETS. 

The calling sequence is: 

CALL DMPETS ( -2,  PRTFIL) 

where PRTFIL is the number of the logical unit that is to receive the print output (usually 
6). Other values of the first argument are reserved for internal use by NICE-DMS. 

6-18 



7 
References 

7-1 



Section 7: REFERENCES 

1. Felippa, C. A.: Architecture of a Distributed Analysis Network for Computational 
Mechanics, Computers and Structures, 13, pp. 405-413, 1981. 

Wright, M. A., Regelbrugge, M. E., and Fcdippa, C .  A.: The Computational Structural 
Mechanics Testbed Architecture Volume I V - The Clobal-Database Manager GAL- 
DBM, NASA CR 178387, January 1989. 

Felippa, C. A.: The Computational Structural Mechanics Testbed Architecture Volume 
I - The Language, NASA CR 178384, December 1988. 

Felippa, C. A.: The Computational Structural Mechanics Testbed Architecture Volume 
II  - Directives, NASA CR 178385, February 1989. 

Felippa, C. A.: The Computational Structural Mechanics Testbed Architecture Volume 
III - The Interface, NASA CR 178386, December 1988. 

IJnivac 1100 Series Operating System Programmer’s Reference Manual, UP-4144, 
Rev. 3, Sperry-Rand Univac, 1973. 

SCOPE 3.4 Reference Manual, Cybernet Services, Control Data Corporation, Septem- 
ber 1977. 

2. 

3. 

4. 

5 .  

6. 

7. 

8. 

9. 

NOS Version 1 Reference Manual (2 vols), Control Data Corporation, December 1976. 

VAX/VMS Command Language Users Guide, Digital Equipment Corporation, May- 
nard, Massachusetts, 1988. 

10. Felippa, C. A.: Utilities for Muster Source Code Distribution: MAX and Friends, 
NASA CR 178383, October 1988. 

7-2 



A 
C 0 M P I L AT I 0 N 

INSTRUCTIONS 

A-1 



Appendlx A: COMPILATION INSTRUCTIONS 

5A.l IOM Compilation on VAX under VMS 

To compile the 1 / 0  Manager on a VAX running under VAX/VMS, you start from three 
Master Source Code (MSC) files: 

1. A FORTRAN Procedure file, assumed to be FORPRC.MSC. 

2. A FORTRAN-source file, assumed to be DMGASP. VAX. 

3. If Block 1 / 0  is wanted, assembly-language source file BIOSUP .MAR. 

To extract FORTRAN-compilable versions, you also need the Master Distributor MAX 
[lo]. In what follows it is assumed that MAX is installed on the VAX system, and that 
you are thoroughly familiar with the its use. 

The first step is to split FORTRAN-INCLUDE files off from the master procedure file, 
FORPRC . MSC. Assume that FORPRC . MSC resides in directory [USER. INCLUDE] . Then 

$ ASSIGN [USER. INCLUDE] PROC : 
$ SET DEF PROC: 
$ MAX/F/L/SIC CFORPRC .MSC >/INC 

where use of the logical name PROC is mandatory. 

The second step is to extract and compile the FORTRAN version for the VAX. Assume 
that the Master-Source-Code file, DMGASP , VAX, resides in the directory [USER. IOMANAGER] , 
and the object code is to be inserted in object library [USER.LIBRARYINICE.OLB: 

$ SET DEF [USER.IOMANAGER] 
$ MAX/F <DMGASP.VAX >.FOR BIO PI0 TRACE /L 
8 FOR DMGASP 
$ LIB [USER. LIBRARY] NICE DMGASP 
$ DEL DMGASP.FOR.*, DMGASP.OBJ.* 

In the MAX command, distribution keys BIO and P I 0  generate Block 1/0 and Paged 
I /O capabilities, respectively, in the DMGASP. FOR file. Tf the key l310 is omitted, nlock T/O 
capabilities are not included. If the key P I 0  is omitted, Paged 1/0 capabilities are not 
included. 

The  third and final step is only required if you specified Block 1/0 capabilities. MACRO 
source file BIOSUP.MAR has to be assembled and the output inserted in the object library: 

$ MAC BIOSUP 
$ LIB [USER. LIBRARY] NICE BIOSUP 
$ DEL BIOSUP.OBJ.* 

A-2 



B 
GLOSSARY 

. 



Appendlx 6: GLOSSARY 

The following quick-reference list collects terms and acronyms that often appear in 
the present document. 

Access method 

Addressing 

Auxiliary storage 

Block 

Block I/O 

Catalogued file 

Closing (a device) 

Core device 

Current device locution 

Data 

Database 

Database manager (DBM) 

Datu library 

The set of procedures for accessing and transferring data 
structures from a residence medium to another. In the 
literature, the term is often used in relation to stored data- 
bases. 

The procedure by which a storage address at which a sub- 
sequent activity is to take place is specified. 

Storage facilities of lower cost and slower access than main 
storage; generally connected to the central processor by 
data channels. 

A generic term that denotes a string of storage objects such 
as characters, words, PRUs, etc., which are considered as 
a storage unit for some purpose. 

An Input-Output process that involves direct (unbuffered) 
transfers of blocks of data between main storage and a disk 
volume. Available from many operating systems through 
special service entry points. 

Univac terminology for permanent files whose names are 
maintained by the system on a Master File Directory. 

See device closing. 

A word-addressable, scratch device that resides on blank- 
common storage. 

A storage address maintained by the 1 /0  Manager for each 
active logical device, and which identifies the location at  
which the next read or write operation is to take pla.ce. 

Information recorded on a storage device. 

An organized collection of operational data needed for the 
completion of an activity. The term is usually reserved for 
activities at the task or project level. 

A data management system that interfaces a database 
with its user environment. 

A named partition of a database. 

B--2 



Data management system A software module that centralizes activities pertaining to 
the manipulation of a class of data structures. 

Data nianager 

Dat use t 

The decision-making component of a data management 
system. 

A record, or set of records, that is a named element of a 
data library. 

Data space See storage space. 

Data structure A set of interrelated data objects viewed as a single logical 
entity. 

De vice See input/output device, logical device. 

Device closing 

Device declaration 

Deuice opening 

A process by which facilities assigned to a logical device 
are released (returned) to the operating system. A freed 
device is inactive. If the device was opened as scratch, its 
con tents disappear. 

See device open 

A process by which facilities assigned to a logical device 
are requested from the operating system. An open device 
is said to be active. 

Deuice option indez (OPTX) An index that characterizes permanency and accessibility 
attributes of a logical device when the device is opened 
(open time). 

An index that describes residence and granularity at- 
tributes of a logical device at  open time. 

Device type index (TYPEX) 

Direct-access storage A type of storage that is capable of processing data a t  sep- 
arate locations without passing over the intervening data. 
Also known as random-access storage, connoting the prop- 
erty that items of data can be stored or retrieved efficiently 
in a random order. 

DMGASP 

Dynamic 

The particular 1/0 Manager described in this document. 

A qualifier applied to certain actions, such as the declara- 
tion and freeing of storage facilities, which are performed 
on command from a running program. (Contrast to static, 
in which such actions are performed before or after run- 
ning the program.) 

B-3 



Appendlx B: GLOSSARY 

E d  e nt 

External device name 

External f i l e  name 

External PRU 

Facilities 

File 

File name 

Global database 

Hardware PRU 

Injo r mat io n 

lnjo r mat ion st  r uc t w e  

1 / 0  Device 

I/O Manager (IOM) 

Internal f i l e  name 

int e rtznl PH U 

A contiguously addressed storage region; also the size of 
any such region. 

The symbolic identifier of a logical device given to the 1/0 
manager by the user program. For disk-resident devices, 
this identifier contains the external file name, and often 
is simply the file name. The external device name is only 
used at  device declaration time; from then on the device 
is identified by its Logical Device Index. 

The identifier by which the residence of a file is specified 
to the operating system. 

The physical record unit by which the user of the 1/0 
manager addresses a direct-access logical device. 

Storage equipment available a t  a computer installation. 

See logical f i l e ,  physical f i l e .  

The identifier(s) by which a logical file is known to the 
operating system. 

A database residing on permanent storage, and which is 
accessible by a network of communicating programs. 

A physical record unit that corresponds directly to the 
mechanical and/or electronic characteristics of the storage 
medium. 

Quantifiable knowledge. 

An organized collection of information viewed as a logical 
entity. 

A storage device connect,ed to the central processor hy a 
data channel. 

The component of a multilevel data management system 
that is responsible for the access method. 

The identifier by which a file structure is referenced by a 
running program. It is linked to the external file name 
(and the Logical Device Index) at open time. 

The PRU size used by the 1 /0  mana.ger for requesting 
physical-record transfers. For Block 1/0 devices, it co- 

B- 4 



incides with the hardware PRU. For FORTRAN 1/0 de- 
vices, it is the Fixed Record Length declared for direct- 
access devices. 

Local database 

Local f i le  

Location 

Logical f i le  

Logical device 

Logical Device Index (LDI) 

Logical Device Table (LDT) 

Logical name 

Logical record 

Main storage 

Manager 

Mass storage 

Online storage 

Open (a device) 

Page Buffer Pool (PBP) 

A database attached to a running program, and which 
disappears when the program stops. 

CDC terminology for temporary f i le .  

An addressable component of a storage device. 

The description mechanism by which logical devices re- 
siding on auxiliary storage are managed by the operating 
system. 

A partition of an 1/0 device that is managed as a logical 
entity for resource-allocation and administration purposes. 
For auxiliary storage devices, the term is equivalent to 
logical file. 

An integer that identifies a logical device entered in the 
Logical Device Table (LDT) of the 1/0 manager. 

A table of logical devices maintained by the 1/0 Manager. 

DEC term for internal f i le  name. 

A record structure as seen by the applications program- 
mer. 

Random-access storage facilities hardwired to the central 
processing unit, and referenceable by machine-code ad- 
dresses. 

A software elcment, that is primarily engaged in the  ad- 
ministration of computing resources. 

CDC term for online, large-capacity auxiliary storage fa- 
cilities allocatable for public use. 

Storage under direct control of the central processing unit. 

See device opening. 

An area of main storage set aside for the realization of 
Paged I/O. 

B--5 



Appendix B: GLOSSARY 

Paged I/O 

Permanent f i l e  

Permanent f i le  name (PFN) 

Physical device name 

Physical record 

Physical record unit (PRU) 

Positioning (a device) 

Random-access storage 

Record 

Scratch f i l e  

Sector 

Sequential-access deuice 
I 

Storage 

I Storage address 

An implementation of buffered 1/0 in which data trans- 
fers between the user-program workspace and an auxiliary 
storage device take into account the presence of a Page 
Buffer Pool in main storage. 

A file structure that survives the execution of the process 
that created or modified it. A permanent file exists until 
it is specifically deleted by its owner, or (if lapsed) by the 
operating sys tem. 

CDC term for ezternal f i l e  name of a catalogued file. 

DEC term for external f i le  name. 

A record structure as presented to the operating system 
services. 

The addressing unit “granule” for direct-access devices. 
Varies according to usage level: see externaZ PRU, hard- 
ware PRU, internal PRU, sector. 

The insertion of a storage address into the Logical Device 
Table to update the current device location. 

See direct-access storage. 

A set of data objects characterized by physical adjacency, 
which constitutes the basic transaction unit in the trans- 
mission of data between main and auxiliary storage. 

A file structure that disappears when the process that cre- 
ated it stops, or when the file is explicitly closed. 

The smallest addressable unit by the operating system on 
a rotating direct-access storage device such as a drum or 
disk. It may he a true equipment cha.racteristic (in which 
case it coincides with a hardware PRU) or the result of 
simulation by the operating system. 

A type of storage in which the data can be accessed only 
by following the order in which it was stored. 

Any device that is capable of retaining information over a 
period of time and of delivering it on request. 

A label, name or number that identifies the place at  which 
data are recorded on a storage device. 

B-6 



Storage device 

Storage peripheral 

Temporary f i le  

Track 

Unit 

Volume 

Word 

A subset of the storage facilities that is treated as an oper- 
ational entity for purposes of allocating or releasing stor- 
age resources during the execution of a run or process. 

A readily detachable part of the storage facilities; for ex- 
ample a magnetic tape unit or a removable disk volume. 

A file structure that disappears when the job that cre- 
ated it terminates, or when its facilities are released. (On 
many systems, temporary and scratch files are undistin- 
guis hable.) 

The portion of a mechanical storage device such a drum, 
disk, or tape, which is accessible to a given read/write 
stat ion. 

See logical unit, storage unit. 

The storage space associated with a separable segment of 
the storage facilities on a one-to-one basis; e.g., a magnetic 
tape reel, mountable cartridge or disk drive. 

The standard main-storage allocation unit for numeric 
data. Conventionally, a word holds a single-precision 
floating-point value. 

B-7 



Appendix B: GLOSSARY 

THIS PAGE LEFT BLANK INTENTIONALLY. 

B-8 



C 
PAGED 1/0 

PERFORMANCE 

c-1 



Appendlx C: PAGED 1/0 PERFORMANCE 

5C.l TO PAGE OR NOT TO PAGE 

The present 1/0 Manager offers the programmer a choice between Page( 
1 / 0  for word addressable devices resident on auxiliary storage. 

10 and Unpaged 

The choice has no effect on device contents: two files properly generated by identical 
runs, one with Paged 1/0 and one with Unpaged I/O, will be identical to the last bit. It 
is also transparent as far as device accessing. 

The choice does affect 1/0 perlormance. The purpose of this Appendix is to examine 
issues pro and con, and to provide comparative performance data gathered on the VAX 
11-780. 

c-2 



5C.2 TRANSPARENCY 

5C.2 TRANSPARENCY 
How “transparent” is Paged 1/0 from a programming standpoint? The issue has two sides: 
effects on the user program code, and effects on device contents. 

I . User Program Code. To accommodate Paged I/O, the user-program developer has to 
make sure of three things: 

1. Declare a Page Buffer Pool (PBP) area through DMPOOL (§4.6). 

2. Provide a scheme for optionally setting the fourth item of the DDPARS array to a 
negative value when calling DMOPEN or DMDAST ($3.1). 

3. Provide robust mechanisms to ensure integrity of Paged devices that have been writ- 
ten to and reside on permanent files ($2.4.3-2.4.4). Two examples: periodic calls to 
DMFLUB ($4.3); closing all devices in an error-termination routine declared through 
DMETER ($6.8). 

Fortunately, these are minor additions to the program source code. The majority of the 
program source code (global and local data management, record transfers, ... ) is not 
affected . 
Device Contents. As far as what’s in the device, there are no changes, since Paged 1/0 
pays no attention to device contents. You are therefore free to do things like the following. 
Open a new device with Unpaged I/O, write to it, close it. Reopen read-only with Paged 
I/O, read records. Close again, reopen Unpaged, write to it, and so on. Such open-close 
sequences can take place during the execution of a single processor or macroprocessor, or 
multiple executions of several processors. 

The only restrictions are: the device must be opened under either option, be word- 
addressable, and if a permanent-file Paged device is modified, the PBP must be appropri- 
ately flushed before the run terminates. 

c-3  



Appendlx C: PAGED 1/0 PERFORMANCE 

, 5C.3 DISADVANTAGES OF PAGED 1 / 0  

The following general disadvantages of Paged 1/0 are annotated here for later reference. 

1. Paged 1 /0  is inherently riskier than Unpaged I/O. Having an intermediate record 
buffer is detrimental to data integrity in two ways: the PBP may be accidentally 
overwritten, and modified pages may be lost if the run aborts. (The latter considera- 
tion is irrelevant, however, for read-only or scratch devices.) ~ 

2. Paged 1 /0  performance is sensitive to more environmental parameters. There are 
more decisions to be made (e.g., page size, PBP length) and these may be machine- 
and/or problem-dependent. 

3. Declaring the Page Buffer Pool ties up main storage. This is more important on non- 
virtual machines with strict limitations on physical main storage, but unimportant on 
virt ual-memory machines. 

c-4 



5C.4 PERFORMANCE PARAMETERS 

I .  

. 

5C.4 PERFORMANCE PARAMETERS 

Two key parameters that affect Paged 1/0 performance are: 

s 

d 
mean size of records transferred. 
mean “device location distance” traveled between successive record transfers. 

The mean record size, s, has significant impact on performance. The smaller the value of 
s, the better the performance of Paged I/O, as this increases the likelihood of “page hits”, 
( i .e. ,  finding data in the PBP when reading or collecting small records into bigger ones 
when writing). But how small is small? This has to be answered by performance tests on 
actual computers. 

The mean-distance-between-records, d, characterizes the “locality” of device refer- 
ences. Smaller values of d favor Paged 1/0 because the PBP fragmentation is reduced, 
with a consequent reduction in page-faulting probability. 

Three other factors that affect performance are: page size p, number of pages n in the 
PBP, and number of Paged 1/0 devices simultaneously active. If the page size and PBP 
length is chosen as recommended in s4.6, these three factors have marginal effect. 

c-5 



Appendix C: PAGED I/O PERFORMANCE 

5C.S A PERFORMANCE TEST 
A fairly comprehensive performance test contrasting Paged and Unpaged 1/0 was per- 
formed on a VAX 11-780 running under VAX/VMS 2.5. The test proceeded as follows. 

1. Parameters p (page size) and buffer length 6 = pn (where n is the number of pages in 
the PBP) were selected and specified using DMPOOL. 

2. A fairly large number of words W (typically 50000 or 100000) was written to a Paged 
1/0 scratch file in many combinations of record sizes s and distances d .  (A statistically 
correct d-sequence was produced by a random number generator.) The same number 
of words was then read back from the file, which WM closed after each cycle, The CPU 
time used and the number of system 1/0 accesses were recorded for each write-read 
cycle. 

4. The test was repeated with Unpaged I/O and the same set of sample record sizes, but 
with d set equal to s for convenience, as Unpaged I/O is insensitive to d.  CPU times 
and system I/O accesses were recorded. 

The performance ratio based on spent CPU time is 

where t P and t U denote CPU times for the Paged and Unpaged 1/0 write-read cycles, 
respectively. p > 1 favors Paged I/O, while p < 1 favors Unpaged I/O. A similar ratio was 
computed from the I/O-access count data, but the values were more erratic. Consequently, 
the CPU time ratio p was selected as the basis for the comparison presented here. 

Figures C.1 through C.3 display log-log plots in the (s, p )  axes for the following three cases: 

Figure p (words) n (words) b (words) Access Method 
c. 1 128 32 4096 Block 1 / 0  
c . 2  51 2 8 4096 Rlock T/O 
(2.3 128 32 4096 FORTRAN 1/0 

The four curves labeled A through D pertain to different selections of the mean record 
distance, d: 

Curve Distance Comments 
A d = s /5  Highly clustered records 
B d = s  Sequential-access like records 
C d = 5s Moderately spread records 
D d = 25s Highly spread records 

C-0 



5C.5 A PERFORMANCE TEST 

10000 

Figure C.1. CPU-time Ratio p ( s , d )  for 
Block 1/0 Device, p = 128, b = 4096 

10000 

Figure C.2. CPU-time Ratio p ( s , d )  for 
Block 1/0 Device, p = 512, b = 4096 

c-7 



Appendlx C: PAGED 1/0 PERFORMANCE 

Figure C.3. CPU-time Ratio p ( s , d )  for 
FORTRAN 1 / 0  Device, p = 128, 6 = 4096 

Figure C.l (Block I/O, page size p = 128) confirms what has been said about the effect 
of s and d. Note also the sudden degradation of Paged 1/0 as s gets near the buffer size 
6 = 4096; each record transaction then forcibly empties the PBP, which causes thrashing. 

Figure C.2 shows the effect of increasing the page size p to 512 words, while keeping 
6 = 4096. This has a beneficial effect on Paged 1/0 performance over most of the s range. 
Increasing p further (to 2048, while boosting 6 to 16384) had only marginal effect for 
9 < 2000. 

Figure C.3 shows the effect of using direct-access FORTRAN 1 / 0  with an internal 
PRU of 128 words (TYPEX = 4, cf. Table 2.2). In this case p = 128 had the best 
performance, no doubt because of the double buffering (cf. $2.4.4). Paged 1/0 performance 
gains for small clustered records (s < 100,d 5 s) appear fairly impressive. However, it 
must be kept in mind that FORTRAN 1/0 is roughly 10-15 times slower than Block 1/0 
on the VAX. 

C-8 



§ C.6 R ECOM M EN DATlO NS 

5C.S RECOMMENDATIONS 

For certain NICE Processors the choice between Paged and Unpaged 1/0 is clear-cut. Two 
examples. 

Interactive Pre- and Post-Processors. These naturally entail processing of many small, 
space-clustered records (typically s < 100, d 5 29). Paged 1/0 is the obvious choice. 

Large-Scale Matrix Processors. These typically involve large records, say s = 1000 to 
100000 words, so choosing Paged 1/0 would be impractical. 

But there are many processors for which the choice is unclear; for example element-matrix 
processors in finite element analysis. Here record sizes and clustering may be heavily 
problem dependent. Also, performance crossover points are computer dependent. 

For the doubtful cases, an in vivo performance test is the only answer. Here is where 
the transparency of Paged 1 /0  on program and data structures pay off. For example, 
Paged 1 / 0  might be profitable on a fast-CPU/slow-1/0 machine (e.g., CDC, Cray) while 
being unprofitable on a VAX or IBM. Being able to turn it on or off selectively (even from 
device to device) without touching the Master Source Code is a definite plus. 

Should the decision be marginal, Unpaged I/O should be preferred. Why? Unpaged 
1/0 is safer, ties up less memory, and is less sensitive to environmental parameters. This 
recommendation includes all processors that are CPU bound. 

C-9 



Appendlx C: PAGED 1/0 PERFORMANCE 

THIS PAGE LEFT BLANK INTENTIONALLY. 

c-10 



D 
MISCELLANEOUS 

UTILITIES 

D-1 



Appendlx 0: MISCELLANEOUS UTILITIES 

The 1/0 Manager package includes some miscellaneous utilities which are not directly 
related to Input-Output activities. These are described below as they have proven generally 
lISt?flJ I. 

D-2 



5D.l CONVERT CHARACTER T O  HOLLERITH: CC2H 

SD.1 CONVERT CHARACTER TO HOLLERITH: CC2H 

CC2H converts a FORTRAN 77 character string to a Hollerith string. 

The callirig sequence is: 

CALL CC2H (C, H, N) 

where 

C Source character string. 

H 

N 

Receiving Hollerith string (typed integer, floating-point, or logical in the 
calling program). 

Number of characters to be moved. No operation if N < 0.  

REMARK D . l  

Characters are stored in H beginning at  its leftmost location. If H is of INTEGER or REAL type, 
this is necessarily word-aligned. CCZH does not right blankfill H, however. 

REMARK D.2 

This utility is handy for writing character records through DMWRIT or DMWAST (53.4). 

REMARK D.3 

The implementation of CCBH has turned out to be surprisingly machine-dependent: so far, five 
versions had to be written for five computers. The VAX implementation, which takes advantage 
of the LOGICAL*l data type, is the simplest and most efficient: 

SUBROUTINE CC2H (C, H, N) 
CHARACTER C(*) 
LOGICAL*l H(*)  
DO 1000 J = l,N 

1000 CONTINUE 
RETURN 
END 

H ( J )  = ICHAR(C(J)) 

But this doesn’t work on other FORTRAN 77 compilers. On word-addressable machines (Univac, 
CDC), the LOGICAL*l type does not exist, so one is forced to do masking and Boolean operations 
on H.  

Byte-addressable machines generally supply the LOGICAL* I type, but the compiler may 
forbid type conversions. For example, IBM’s VS-FORTRAN offers LOGICAL*l, but forbids 
storing an integer value into it. The internal-file transfer feature of FORTRAN 77 provides a 
workable although inefficient solution: 

D-3 



I Appendix D: MISCELLANEOUS UTILITIES 

SUBROUTINE CC2H (C, H, N) 
CHARACTER C(*) 
LOCICAL*l H(*) 
Mi = 0 
DO 1000 K = l,(N+127)/128 

M2 = MIN(Ml+N-l28*(K-l),M1+128) 
READ (C(Ml+l:M2>.'(128Al)'), (H~I~,I=Ml+l,M2) 
M1 = M2 

1000 CONTINUE 
RETURN 
END 

D-4 



$0.2 CONVERT HOLLERITH TO CHARACTER: CH2C 

5D.2 CONVERT HOLLERITH TO CHARACTER: CH2C 

CH2C converts a Hollerith string to a FORTRAN-77 character string. 

The calling sequence is: 

CALL CH2C (H, C, N) 

where 

EI Receiving Hollerith string (typed integer, floating-point, or logical in the 
calling program). 

C Destination character string. 

N Number of characters to be moved. No operation if N 5 0. 

REMARK 0.4 

This utility is handy for reading character records through DMREAD or DMRAST ($3.5). 

REMARK 0 . 5  

Remark D.3 about machine dependencies also applies to CH2C. Again the VAX implementation 
is the simplest: the fifth line changes to C(J) = CHAR(H(J)). 

D-5 



Appendix D: MISCELLANEOUS UTILITIES 

sD.3 FIND BATCH OR INTERACTIVE: FBI 
Entry point FBI finds whether the run is batch or interactive. 

The calling sequence is: 

CALL FBI (RUNMOD) 

where 

RUNMOD An integer variable that receives a run mode indicator. 

0: batch mode. 

1: interactive mode. 

REMARK D.6 

This utility is highly machine dependent, because FBI must query the operating system. Some 
operating systems do not provide information of this nature; in such a case RUNMOD = 0 is 
returned. 

D-6 



$0.4 G E T  BLANK-COMMON LOCATION OF ARGUMENT: LOCBCW 

sD.4 GET BLANK-COMMON LOCATION OF ARGUMENT: LOCBCW 

Function LOCBCW computes and returns the blank-common word address of its argument. 

The function reference is: 

ILOC = LOCBCW (ARG) 

where 

LOCBCW Blank-common word address of the function argument ARG. 

REMARK 0 . 7  

ARG does not have to be physically in blank common (but see next Remark). 

REMARK 0.8 

On byte-addressable machines, the result may be off by one unless ARG happen to be exactly 
word-aligned with the start of blank common. 

REMARK D.9 

The implementation of LOCBCW is machine-dependent, as accessing the internal address of an 
argument is not an operation defined in standard FORTRAN. 

D-7 



Appendix D: MISCELLANEOUS UTILITIES 

4 

4 

THIS PAGE LEFT BLANK INTENTIONALLY. 

D-8 



E 
3 INDEX 

E-1 



Appendlx E: INDEX 

A 
Access, 51.2 

-, cyclic, see Cyclic access 
- method, 51.1.1 

-, random, see Random access 
Active device, 51.4.1 

Addressing, 5 1.2 

Alignment, see PRU alignment 
Auxiliary storage, 51.2 

- device, $1.4.2 

B 
Basic operations, 53 

Block I/O, 51.3.2 
-- device, $2.5.1 

C 
Catalogued file (IJnivac), $2.6.1 

CC2H utility, Appendix E 
CDC external device names, see External device names on CDC 
CDC file conventions, see File conventions on CDC 
CDLOC, see Current Device Location 
Central error management routine DMSERR, $6.1.1 

CH2C utility, Appendix E 
Close device, $1.3.1, 51.4.2 

-- : DMCLOS/DMFAST, $3.2 

Close message, $3.2.3, 54.7 

Conditional close, s3.2.1 

Conditional open, 53.1.1 

Core device, $1.4.3, $2.5.1 

Current Device Location, $2.3.3 

Cyclic access, $1.2 

D 
Declare Page Buffer Pool: DMPOOL, 54.6 

Defuse fatal errors: DMEASY, $6.7 

E-2 



Device, 51.2 
-, active, see Active device 
-, auxiliary-s torage, see Auxiliary-storage device 
-- capacity limit, 52.5.3 
-, core, see Core device 
- descriptor parameters, 52.5 
-, direct-access, 51.2 
- extent, 52.2.1 
-, inactive, see Inactive device 
- index, see Logical Device Index 
- length, see Device extent 
-, logical, see Logical devices 

- management overview, 51.4 
- options index, 52.5.2 
- positioning, 52.2.1, 52.3.2 
-, physical storage, $1.2 
-, sequential-access, see Sequential-access device 
- type index, 52.5.1 
DMABRT entry point, 54.1 
DMACRO entry point, 84.2 
DMCLOS entry point, 53.2.1 
DMDAST entry point, 53.1.2 
DMEASY entry point, $6.7 

DMEINF entry point, $6.5 
DMETER entry point, 56.8 

DMFAST entry point, $3.2.2 
DhlFA'I'I? entry point, $6.9 

UMFLIJR entry point, 54.3 

IIMGASP, see 1/0 Manager 
-, scope of, 51.3 
DMLAST entry point, 53.6.2 
DMLIMT entry point, i4.4 
DMNEXT entry point, 54.5 
DMOPEN entry point, 53.1.1 

E-3 



Appendlx E: INDEX 

DMI'AST entry point, 53.3.2 

DMPETS entry point, $6.10 

DMPOOL entry point, $4.6 

DMPOST entry point, $3.3.1 

DMRAST entry point, $3.5.2 

DMSERR, $6.1.1 

DMSOCM entry point, $4.7 

DMSTAT entry point, $3.6.1 

DMUNIT entry point, $4.8 

DMUSER entry point, $6.3 

DMWAST entry point, $3.4.2 

DMXPRU entry point, $4.9 

E 
End of information, $2.2.1 

EOI, see End of information 
Error, §6 

- abort run: DMABRT, $4.1 

- classification, $6.1.1 

- code, $6.1.2, $6.4, 56.5 

- condition, $6.1 

- diagnostics, $6.2 

- handling, $6 

- key, '$6.1.2, $6.5 

- t ~ ~ ~ ! S s i ~ ~ t ' ,  '$6.1.2, 56.2, $6.5 

_ _  list, '$6.2.2 

- source. 56.1 

- termination routine, see Specify error terminator 
- trace stack, $6.1.2, $6.3, $6.10 

Explicit positioning, $2.3.3 

External device name, $1.4.2, $2.7 

_ - -  on CDC, $2.7.2 

- - -- on Univac, $2.7.1 

_ _  - on VAX, $2.7.3 

Exterrial file name, $1.4, $2.7 

4 

E-4 



1 

... 

--- (Univac), $2.6.1 

External PRU, 52.2.2 

-- size parameter, 52.5.4 

External file name, 51.4.2 

Extract error information: DMEINF, $6.5 

EZ-GAL, $1.1.2 

F 
FBI utility, Appendix E 
File, $1.4 

- conventions on CDC, $2.6.2 

- conventions on Univac, $2.6.1 

- conventions on VAX, $2.6.3 

- integrity, 52.4 

- length recovery, $2.5.6 

- systems, 52.6 

Flush Page Buffer Pool: DMFLUB, $4.3 

FORTRAN I/O, $1.3.2 

-- device, $2.5.1 

G 
Gaps, see Interrecord gaps 
Global database, $1.1 

.- - Manager, 51.1.2 

Glossary, Appendix C 

H 
Hardware PRU, $2.2.4 

I 
Identify user subprogram: DMUSER, $6.3 

Implicit positioning , $2.3.3 

Inactive device, 51.4.1 

Information retrieval, $5 

.- __ functions, 55 

Inquire by Logical Device Index: LMINQI,, $5.3 

Inquire for device name in LDT: LMINQT, $5.4 

E-5 



Appendlx E: INDEX 

Inquire for file existence: LMINQX, $5.5 

1 / 0  Manager, $1.1 

and NICE, $1.1 

-, Block, see Block 1 / 0  
-, FORTRAN, see FORTRAN 1/0 
-, Paged, see Paged 1 / 0  
- Packet, $3.6.1 

-- role of, $1.1.1 

- status code, $6.1.2, $6.6 

Internal file name, $1.4.2 

_ _ _  (Univac), $2.6.1 

Internal PRU, $2.2.3 

Internal storage, $1.2 
Interrecord gaps, 52.3.4 

IOM, see 1/0 Manager 
- record, see Record 

L 
LDI, see Logical Device Index 
LDT, see Logical Device Table 

List of error messages, $6.2.2 

IJist state information: DMSTAT/DMLAST, $3.6 

LMDLOC function, $5.1 

LMEQCL) function, $5.2 

LMEItCD function, $6.4 

JJMINQL function, $5.3 

LhlTNQT fiinction, 55.4 

LMINQX function, $5.5 

LMIOST function, $6.6 

LMIPRU function, $5.6 

LMLDIF function, $5.7 

IJMLDIU function, $5.8 

LMfJfM'r function, $5.9 
LMNEX'I' function, 55.10 

LMNIJWW function, $5.11 

E-6 



c 

LMOPTX function, 55.12 

LMTYPX function, Fj5.13 

LMUNIT function, $5.14 

LMXPRU function, 55.15 

Local database, 51.1 
Local file (CDC), $2.6.2 

LOCBCW utility, Appendix E 
Location, see Storage location 
Logical device, 51.4.1 

-- name (DEC), 52.6.3 

-- Table, $1.4.2, 53.6 

--- print, 53.6.1 

-- Index, 51.4.1 

file name (CDC), 52.5.2 

- record, $2.2.1 

- unit, 51.4.2, 52.5.5 

-- -LDI correspondence, $2.5.5, 54.8 

M 
Macroprocessor flag, $3.2.1, $4.2 
Main storage, 51.2 

Miscellaneous utilities , Appendix E 

N 
NICE, Network of Interactive Computational Elements, $1.1 

-DMS, $1.1 

processor, $1.1 

Next free location, $2.2.1 

0 

Open device, $1.3.1, $1.4.2 
- _. . DMOPEN/DMDAST, $3.1 

Open message, $3.1.3, 54.7 

Operation, 51.3, $3, $4 
-, basic, see Basic operations 
- Status Descriptors, $3.6 

E-7 



I Appendix E: INDEX 

--- print, 53.6.1 

-, supplemental, see Supplemental operations 
OSD, see Operation Status Descriptors 

P 
Page Buffer, $1.3.3 

- _  Pool, §1.3.3, 84.3, $4.6 

-- Table, $3.6.1 

Paged I/O, $1.3.3 

-- performance, Appendix D 
-- statistics, $3.6.1 

Paged Block I/O, $2.4.3 

Paged FORTRAN I/O, '$2.4.4 

PBP, see Page Buffer Pool 
Permanent file, $2.6, $2.7 

~ 

~ 

I 

I -- name (CDC), $2.6.2 

Physical devices (DEC), $2.6.3 

Physical organization of data, $2.1 

I Physical record, $2.2.1 
-- - unit, 52.2.1 

Print state information, see List information 
Print error trace stack: DMPETS, $6.10 

I Processor, see NICE processor 

PRU, see Physical record unit 
- alignment, $2.3.2 

Position device, 51.3.1 

__ - : I)MPOST/DMPAST, 83.3 

R 
Itan(iorn access, !j 1.2 

Read record, $1.3.1 
I 
I 

- - :  I)MREAD/DMRAST, $3.5 

Record, 52.3 

-- dynamics, 52.4 

Reset LDI-to-unit correspondence: DMUNIT, 54.8 

Retrieve, see Informat ion retrieval functions 

E-8 



I 

d 

I 

- device capacity limit: LMLIMT, 55.9 

- device extent: LMNEXT, $5.10 

- device location: LMDLOC, $5.1 

- equipment code: LMEQCD, $5.2 

- error code, see Test error condition 
- external PRU: LMXPRU, $5.15 

- first free LDI: LMLDIF, 55.7 

- internal PRU: LMIPRU, 55.6 

- 1/0 status code: LMIOST, 56.6 

- LDI that matches unit: LMIPRU, $5.8 

- logical unit: LMUNIT, 55.14 

- options index: LMOPTX, s5.12 

- type index: LMTYPX, $5.13 

- user words written: LMNUWW, 55.11 

S 

Scratch file, 52.6, $2.7 

Sequential-access device, 5 1.2, $2.5.1 

Set device capacity limit: DMLIMT, $4.4 

Set device extent: DMNEXT, $4.5 

Set device PRU size: DMXPRU, 54.9 

Set macroprocessor flag: DMACRO, $4.2 
Specify error terminator: DMETER, 56.8 

Stand-alone configuration, $1.1.2 

State informat ion, see List informat ion, Informat ion retrieval 

Storage, $1.2 

-, auxiliary, $1.2 

-, backing, 51.2 

-, internal, $1.2 

- location, 51.2 

--, main, 5 1.2 

Storage components, $1.2 

Supplt:rnent,al oporations, $4 
Su ppress o pon /c lose messages, 4.7 

T 

E 9  



Appendix E: INDEX 

Take fatal error exit: DMFATE, $6.9 

Temporary files (Univac), 52.6.1 

Test error condition: LMERCD, $6.4 

U 
Univac external device names, see External device names on Univac 
Univac file conventions, see File conventions on Univac 
Unpaged I/O, $1.3.2 

Unpaged Block I/O, $2.4.1 

Unpaged FORTRAN I/O, $2.4.2 

Unit, logical, see Logical unit 
User program, $ 1.1.2 

V 
VAX external device names, see External device names on VAX 
VAX file conventions, see File conventions on VAX 

W 
Write record, $1.3.1 

- -: DMWRIT/DMWAST, 53.4 

4 

I 

E-10 



Report Documentation Page 

L .  Report No. 

I. Title and Subtitle 

2. Government Accession No. 
NASA CR-178388 

3. Recipient's Catalog No. 

5. Report Date 

6. Performing Organization Code 

The Computational Structural Mechanics Testbed Architecture 
Volume V - The Input-Output Manager DMGASP 

'. Author(8) 
Carlos A. Felippa 

b. Performing Organication Name and Address 
Lockheed Missiles and Space Company, Inc. 
Research and Development Division 
3251 Hanover Street 
Palo Alto, California 94304 

12. Sponsoring Agency Name and Address 

8. Performing Organication Report No. 

LMSC-D878511 
10. Work Unit No. 

505-03-01-10 
11. Contract or Grant No. 

NAS1-18444 
13. Type of Report and Period Covered 

National Aeronautics and Space Administration 
Langley Research Center 
Hampton, VA 23665-5225 

19. Security Clmaif.(of thio report) 20. Security Clmsif.(of this page) 
Unclassified Unclassified 

I Contractor Report 

21. No. of Pager 22. Price 
157 A08 

14. Sponsoring Agency Code 

I 

15. Supplementary Notes 
Carlos A. Felippa, Center for Space Structures bnd Controls, 
University of Colorado, Boulder, CO 80509-0429 

Langley Technical Monitor: W. Jefferson Stroud 
16. Abrtract 

This is the fifth of a set of five volumes which describe the software architecture for the Computational 
Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed 
Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the 
command language interpreter (CLIP), and the data manager (GAL). Volumes I, 11, and I11 (NASA CR's 
178384, 178585, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. 
Volumes IV and V (NASA CR's 178587 and 178388, respectively) describe GAL and its low-level I/O. 
CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control 
the flow of execution of processors written for NICE. Volume V describes the low-level data management 
component of the NICE software. It is intended only for advanced programmers involved in maintenance 
of the software. 

17. Key Words (Suggested by Authorr(r)) 
Structural analysis software 
Command language interface software 
Data management software 

18. Distribution Statement 
Unclassified-Unlimited 


